Яков Зельдович - "Возможно ли образование Вселенной «из ничего»?"
- Категория: Научные и научно-популярные книги / Физика
- Автор: Яков Зельдович
- Год выпуска: -
- ISBN: нет данных
- Издательство: -
- Страниц: 6
- Добавлено: 2019-08-20 12:17:17
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту free.libs@yandex.ru для удаления материала
Яков Зельдович - "Возможно ли образование Вселенной «из ничего»?" краткое содержание
Прочтите описание перед тем, как прочитать онлайн книгу «Яков Зельдович - "Возможно ли образование Вселенной «из ничего»?"» бесплатно полную версию:Из журнала "Природа"1988, № 4, где была опубликована эта статья: Якова Борисовича Зельдовича нет нужды представлять читателям "Природы". Автор фундаментальных работ в области физической химии, теории элементарных частиц, ядерной физики, астрофизики и космологии, он, кроме того, был еще и блестящим популяризатором, ярко, живо и образно рассказывающим в своих популярных книгах и статьях о наиболее "горячих" проблемах современной науки. В последние годы особое внимание он уделял релятивистской астрофизике и космологии. Именно в это время им написаны для нашего журнала статьи "Черные и белые дыры" (совместно с А.А. Старобинским и И.Д. Новиковым; 1976, № 1); "Современная космология" (1983, № 9); "Почему расширяется Вселенная!" (1984, № 2). Продолжает эту тематику и последняя его публикация "Возможно ли образование Вселенной "из ничего?". Послесловие к ней написал академик А.Д. Сахаров.
Яков Зельдович - "Возможно ли образование Вселенной «из ничего»?" читать онлайн бесплатно
ВСЕЛЕННАЯ
Размеры окружающей нас Вселенной и, даже более скромно и более точно, размеры исследованной нами части Вселенной, далеко превышают человеческое воображение.
Древним людям трудно было представить себе, что Земля - это шар. Сегодня, когда самолеты без посадки пролетают многие тысячи километров, в век космических полетов, радио и телевидения (и в век межконтинентальных ракет с ядерным зарядом, к сожалению) Земля представляется маленьким хрупким шариком. Не удивляет нас и расстояние до Солнца - 150 млн км, так называемая астрономическая единица. Однако расстояние от Солнечной системы до центра Галактики (около 10 кпк = 3•1022 см) в два миллиарда раз больше расстояния от Земли до Солнца. В свою очередь, расстояние, на котором еще удается наблюдать яркие галактики, порядка нескольких тысяч мегапарсек - еще почти в миллион раз больше расстояния от Солнца до центра нашей Галактики. Если это наибольшее расстояние уменьшить в 1015 раз, т. е. примерно до 1 а. е., то Солнечная система уменьшится до масштаба пылинки размером меньше миллиметра...
Так же, как и линейный масштаб, т. е. размер Вселенной, невообразимо велико и количество вещества, с которым мы имеем дело. Масса Земли около 6•1027 г. Масса Солнца около 2•1033 г, т. е. в 300 тыс. раз больше. Галактика имеет массу порядка 2•1011 масс Солнца. В наблюдаемой нами области Вселенной суммарная масса очень грубо, по порядку величины, оценивается как 1055 г, т. е. порядка 1022 масс Солнца.
Человек, живо и наглядно ощущающий всю огромность пространства и массы, открывающихся современным телескопам, не может остаться равнодушным. Соответствующие величины потрясают воображение настолько, что ощущаешь головокружение. Первым, естественным следствием этого потрясения является отвращение к теории расширяющейся Вселенной. Неужели все великолепие и громадность Вселенной когда-то умещалось в шаре размером в несколько сантиметров? И еще более диким кажется вопрос: неужели все сущее, все наблюдаемое могло образоваться буквально "из ничего"?
В предлагаемой статье я сознательно ограничусь узкой постановкой вопроса. Обсудим только, не противоречит ли это предположение - образование Вселенной "из ничего"- каким-либо твердо установленным общим законам природы. Иногда ведь самый общий "закон сохранения" так и формулируют: "из ничего не может получиться ничего". Такую формулировку я с порога отвергаю - она наивна и ненаучна. Есть закон сохранения энергии. Есть, например, еще закон сохранения электрического заряда. Мы проверим выполнение этих четко физически сформулированных законов, а также обсудим существование и выполнение других подобных, более или менее твердо установленных физических законов.
Чтобы не превращать эту статью в полный курс космологии, мы не будем исследовать подробно строение Вселенной, закон ее расширения и полный сценарий ее эволюции.
Можно привести такую житейскую аналогию: представьте себе, что к Вам пришел изобретатель с каким-то чудесным двигателем или генератором электрического тока. Разумный шаг эксперта состоит в том, что выясняется вопрос, не принесли ли Вам проект "вечного двигателя" (реrpetuum mobile). Давно уже действует обычай с порога отвергать без детального рассмотрения такие проекты. "Perpetuum mobile" нарушает закон сохранения энергии, значит, где-то в проекте содержится ошибка. Выяснение конкретной ошибки уже не интересно никому, кроме самого изобретателя.
Подойдем с такой же меркой к вопросу о возникновении Вселенной "из ничего". Противоречит ли это предположение законам физики? Возможно ли это, можно ли будет (если не сейчас, то в будущем) создать непротиворечивую, правильную теорию этого, поистине самого грандиозного явления?
СОХРАНЕНИЕ ЗАРЯДОВ
Начнем с закона сохранения электрического заряда. Ответ лежит на поверхности, он очевиден: нет никакого запрета на рождение электронейтральной Вселенной, т. е. Вселенной, содержащей равное число положительных и отрицательных зарядов. Есть все основания думать, что именно такова наша Вселенная. В противном случае возникли бы сильные электрические поля, которые нарушили бы ее (Вселенной) однородность и изотропию. Итак, Вселенная, скорее всего, строго нейтральна, а значит, вполне могла родиться "из ничего" (без противоречия закону сохранения электрического заряда).
Обратимся к закону сохранения барионного заряда. Напомним, что во всех известных процессах, происходящих в лаборатории, суммарное число протонов и нейтронов не меняется. В частности, радиоактивность ядер проявляется либо как перегруппировка протонов и нейтронов, либо как превращение протонов в нейтроны и обратно.
Так, при испускании g-лучей (т. е. фотонов) перегруппировка происходит при переходе данного ядра из энергетически возбужденного состояния в основное или в состояние с меньшей энергией возбуждения. При a-распаде ядра часть протонов и нейтронов материнского ядра остаются в дочернем ядре, а другие вылетают в виде ядра гелия (два протона и два нейтрона). В b-распаде быстрый электрон (b-частица) и нейтрино рождаются при превращении нейтрона в протон. Есть и обратный процесс испускания позитрона (p = N+e+ + ne) при превращении протона в нейтрон, но такой процесс идет лишь в том случае, если протон находится в ядре и после превращения нейтрон занимает более низкое энергетическое состояние.
Свободный протон легче свободного нейтрона, поэтому свободный нейтрон b-радиоактивен; свободный протон стабилен, нестабильным он бывает только внутри некоторых ядер.
Итак, к концу 40-х годов закон сохранения барионов формулировался просто: сумма числа протонов и нейтронов не меняется. Затем последовало открытие так называемых странных частиц. Сперва они были открыты в космических лучах, а позже очень подробно исследованы в лаборатории на ускорителях. Они нестабильны, образуются из протонов или нейтронов и при распаде снова дают протоны или нейтроны.
Так, например: p + N = D + K+ + N (D - странный гиперон, К - странный мезон). Странными эти частицы были названы потому, что при сравнительно большой вероятности образования за очень короткое время столкновения они имеют довольно большое время жизни, 10-8-10-10 с.
В начале 50-х годов были открыты так называемые барионные резонансы. Рассеяние л-мезонов на протонах и нейтронах зависит от энергии в соответствии с тем, что эти две частицы сперва сливаются в одну, которая потом снова распадается. Так, например:
После этих открытий закон сохранения барионов усложнился: сохраняется сумма
B = p + N + D + S + ... + D++ + D+ + D0 + D- + ... = constили, иными словами, сохраняется общее количество барионов (Здесь D, S, ... - странные барионы; многоточие заменяет перечисление всех странных барионов - от D++ до D-, самых легких барионных резонансов, а повторное многоточие заменяет перечисление всех резонансов.).
В 1955 г. были, наконец, экспериментально открыты антипротоны. Теоретически существование античастиц - антибарионов - было предсказано вскоре после предсказания и обнаружения антиэлектронов, т. е. позитронов. Однако энергия, нужная для рождения пары протон-антипротон в 2000 раз больше, чем для пары электрон-позитрон, поэтому между двумя открытиями возник интервал в четверть века. В это время у некоторых ученых нервы не выдерживали и высказывались сомнения относительно существования антибарионов; теперь для этих сомнений нет места!
Итак, в окончательной форме закона сохранения барионного заряда: сохраняется разность числа барионов и антибарионов.
За последние 20 лет показано, что барионы состоят из 3 кварков. Антибарионы состоят из антикварков. Соответственно, барионный заряд и закон его сохранения на языке кварков формулируется так:
3В = Sqi - Sq'k= const, где Sqi - число кварков i-ro сорта; Sq'k - число антикварков k-ro сорта; сумма берется по всем сортам.Закон сохранения барионного заряда необычайно важен как для Вселенной в целом, так и для непосредственно окружающего нас современного мира. С учетом этого закона данное количество барионов можно использовать для производства энергии, только переводя их в наинизшее энергетическое состояние, а именно в ядра железа *. Отсюда следует, что энергию можно получить, либо превращая уран в ядра середины таблицы Менделеева, либо превращая водород в железо.
* Имеется в виду, что в ядрах железа энергия связи нуклонов максимальна. (Прим. ред.)
Жалоба
Напишите нам, и мы в срочном порядке примем меры.