Владимир Левшин - Диссертация рассеянного магистра Страница 13
Владимир Левшин - Диссертация рассеянного магистра читать онлайн бесплатно
Вместо 2+1=3, там было высечено: 10+1=11.
Единичка, видно, как всегда, решила меня разыграть, и я очень обиделся.
Она снова взяла трубу и стала читать другую надпись: 6+4=10.
Я понял, что она продолжает меня поддразнивать, потому что на самом деле там было высечено не 6+4=10, а 110+100=1010.
Насмешница покачала головой и сказала:
— Ну разве может 110+100 равняться 1010? А вот 6+4 — это уж точно равно десяти!
В самом деле, как может 110+100 равняться 1010? Видимо, древние математики ещё не научились как следует считать. Я сразу потерял интерес к этим наскальным нелепостям. Мы двинулись дальше и наткнулись на огромный камень с надписью:
«Стой! Прежде чем продолжать путь, быстро выясни, делится ли это число на 11. Не выяснишь — лучше возвращайся назад!»
А число было вот какое: семизначное! По краям стояли шестёрки, а между ними пять единиц: 6111116 — шесть миллионов сто одиннадцать тысяч сто шестнадцать.
Единичка тут же принялась делить это число на 11. Но я только улыбнулся. Зачем делить, если известен простой признак делимости числа на 11? Надо сложить все цифры, стоящие на нечётных местах, затем то же проделать с цифрами, стоящими на чётных местах, и если суммы одинаковы, будьте уверены, что число на 11 делится.
Итак, на нечётных местах в числе 6111116 стоят: 6, 1, 1 и снова 6, что в сумме составляет 14 (6+1+1+6=14). А вот начётных местах стоят три единицы, они в сумме дают число 3. Но ведь 14 не равно трём, значит, все число на 11 делиться не должно. Тут и проверять нечего!
Но Единичка… Ах эта Единичка! Она утверждала, что у неё число на 11 разделилось и что 6111116, делённое на 11, равно 555556.
— Чепуха! — возразил я. — Не может быть! Оно не должно делиться.
— А вот и разделилось, — настаивала Единичка. — Попробуйте сами.
Но я только рукой махнул… Вскоре мы подошли к пещере. Вход в неё был такой крошечный, что в него и пролезть трудно. Но Единичка мигом всунула в него голову и закричала:
— Ой, как там темно! Я ничего не вижу! Вот так история! Как же мы будем двигаться в полной темноте? Но тут я увидел над входом объявление, от которого сразу повеселел:
ПЕЩЕРА ОСВЕЩАЕТСЯ ЭЛЕКТРИЧЕСТВОМ АВТОМАТИЧЕСКИ,если вы правильно ответите на следующий вопрос.Напишите два десятизначных числа, из которых каждое содержит все десять цифр. Одно из них должно быть наибольшим из возможных, а второе — наименьшим.
Сущие пустяки! Я тут же написал наибольшее десятизначное число, состоящее из всех десяти цифр, — сперва цифру 9, аза ней все подряд в обратном порядке: 8, 7, 6, 5, 4, 3, 2, 1 и 0. Так я получил наибольшее число: девять миллиардов восемьсот семьдесят шесть миллионов пятьсот сорок три тысячи двести десять. Большего числа из десяти цифр не составить. Ну, а с наименьшим дело обстояло ещё проще. Надо было только написать те же цифры в обратном порядке: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Я так и поступил, но… лампочка в пещере почему-то не зажглась.
— А это потому, — вмешалась неугомонная Единичка, — что у вас получилось не десяти-, а девятизначное число. Ведь цифра нуль перед числом ровно ничего не значит!
Что ж, на этот раз она оказалась права. Я немедленно переставил нуль на конец числа: 1234567890. Да будет свет! Но света не было. Очевидно, авария на электростанции. Так мы в пещеру и не попали. Я расстроился, а тут ещё Единичка (хорош Пятница!) стала приставать со своими вопросами. Ей, видите ли, понадобилось узнать, сколько вообще можно написать десятизначных чисел из всех десяти цифр!
Этот вопрос требует длительного вычисления. Думаю, что на него может ответить только быстродействующая вычислительная машина. А так как я забыл её захватить, придётся Единичке подождать, пока я вычислю сам.
ШЕСТОЕ ЗАСЕДАНИЕ КРМ
должно было состояться за городом. Рано утром члены клуба собрались у пригородных касс Казанского вокзала. Отправиться решили на 42-й километр, где, по сведениям Севы, раскинулся большой сосновый бор.
— Отлично! Будет где заблудиться! — сразу же сообразил Нулик.
То же самое с ещё большим основанием мог бы сказать Пончик. Во время нашей прогулки он всё время куда-то исчезал, а потом неожиданно вылетал из-за какого-нибудь куста, держа в зубах то пустую консервную банку, то оторванную подмётку. Нулика эти находки раздражали: ему никак не удавалось почувствовать себя на необитаемом острове.
— И зачем только я перечитал вчера «Робинзона Крузо»! — сетовал президент. — Зачем переименовал Пончика в Пятницу!
В конце концов новоиспечённого Пятницу привязали к дереву, и мы занялись разбором главы, которую успели прочитать дорогой.
— По ошибкам Магистра огонь! — скомандовал Сева. — Слово предоставляется мне. Первая ошибка состоит в том, что, обратившись к астрономии, Магистр попал пальцем в небо. Ведь Зодиак вовсе не созвездие, а совокупность двенадцати созвездий. Они образуют небесный пояс, по которому Солнце путешествует в течение года. Вернее, нам кажется, что оно путешествует. И в каждом из двенадцати созвездий оно задерживается примерно один месяц. А «зодиак» по-гречески значит «звериный круг».
— Ой! — обрадовался Нулик. — Прямо небесный зоопарк!
— Ничего удивительного, — объяснил Сева. — В древности людям казалось, что некоторые созвездия напоминают то льва, то рыбу, то скорпиона… Отсюда и названия: Овен (то есть баран), Телец, Рак, Лев, Скорпион, Рыбы…
— А в каком из созвездий Зодиака находится звезда Проксима? — спросила Таня.
— В том-то и дело, что ни в каком, — усмехнулся Сева. — Проксима входит в созвездие Центавра, которое не имеет к Зодиаку никакого отношения.
— А Центавр — тоже зверь? — спросил Нулик.
— Как тебе сказать… — замялся Сева, — наполовину. Были такие существа в древнегреческой мифологии: центавры — иначе кентавры. Торс у кентавра человеческий, а всё остальное — лошадиное.
— Гибрид, — сказал Нулик.
— Вот в созвездии этого гибрида и находится маленькая, еле заметная звёздочка Проксима. Вероятно, поэтому Магистр сказал, что она самая далёкая. На самом деле Проксима среди звёзд — наша ближайшая соседка. Недаром «проксима» по-гречески и значит «ближайшая». И свет от неё идёт к нам не миллиарды лет, как утверждал Магистр, а всего примерно четыре с четвертью года.
Нулик только свистнул.
— Вот так «ближайшая»! Сколько же до неё километров?
— А ты сосчитай, — поддразнила Таня. — Как известно, свет за одну секунду пробегает 300000 километров . Сколько же километров проделает он за четыре с четвертью года?
— Для сравнения не мешает тебе знать, — добавил Сева, — что от Солнца до нас всего каких-нибудь 150 миллионов километров, и свет пробегает этот путь за 8 минут.
— Вот именно, за 8 минут, — подхватила Таня, — а не за 8 секунд, как думает наш рассеянный математик…
— Не пора ли нам, однако, приземлиться и перейти к разбору Магистрова дома, — вмешался Олег.
— Не успел человек построить дом, а его уже разбирают, — сострил Нулик.
Таня засмеялась:
— Кто ж виноват, что бедный строитель запутался в трех соснах?
— Что — в трех! Он даже в двух запутался, — добавил Сева, никогда не упускавший возможности скаламбурить. — Ведь Магистр утверждает, что можно построить не только трехстенный, но и двухстенный дом.
— К счастью, он отказался от своей мысли, — сказала Таня, — поэтому займёмся наконец трехстенным домом. Единичка, конечно, была права, когда говорила, что именно медиана, а не средняя линия, делит пополам площадь треугольника.
— Медиана! Средняя линия! — негодовал Нулик. — Нельзя ли выражаться яснее?
Таня подобрала несколько прутиков, выложила треугольник, а потом проложила прутик из одной вершины треугольника до середины противоположной стороны.
— Вот это и есть медиана треугольника, — сказала она.
— Ага, — сообразил Нулик, — выходит, таких медиан можно провести в треугольнике три, из каждой вершины по одной.
— Правильно, — подтвердила Таня и тем же прутиком соединила середины двух сторон треугольника.
— А это уж средняя линия! — догадался Нулик и тут же сам проложил две другие средние линии в треугольнике.
— Как видишь, ничего трудного, — сказала Таня. — Тогда продолжим. Магистр спутал равные треугольники с равновеликими. Ведь равные треугольники, если их наложить один на другой, обязательно совпадут, а для равновеликих это совсем не обязательно. Обязательно у них должны быть равны только площади. А теперь. Нулик, думаю, ты и сам докажешь, что не средняя линия, а именно медиана делит треугольник на два равновеликих.
Президент был польщён, но всё-таки отложил доказательство до другого раза. Он, видите ли, проголодался… Пончик, подтверждая тонкий намёк своего хозяина, жалобно заскулил…
Мы извлекли из рюкзаков свои припасы и принялись за еду.
Что может быть приятнее завтрака в лесу? Ты сидишь на земле, в неудобной позе, ешь холодные сосиски, запиваешь лимонадом прямо из бутылки, а над тобой качаются зелёные ветки и вовсю заливается птичья самодеятельность…
Жалоба
Напишите нам, и мы в срочном порядке примем меры.