Владимир Левшин - Путевые заметки рассеянного магистра Страница 13

Тут можно читать бесплатно Владимир Левшин - Путевые заметки рассеянного магистра. Жанр: Детская литература / Детская образовательная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Владимир Левшин - Путевые заметки рассеянного магистра читать онлайн бесплатно

Владимир Левшин - Путевые заметки рассеянного магистра - читать книгу онлайн бесплатно, автор Владимир Левшин

ПЯТНАДЦАТОЕ ЗАСЕДАНИЕ КРМ

чуть было не сорвалось из-за серьёзных разногласий: никак не могли договориться, где его проводить. Спортзал, класс, прогулка по бульварам — все это уже было и больше никого не устраивало. Нулик заявил, что заседать следует только на воздушном шаре. Сева хотел отправиться на вершину какого-нибудь вулкана. Олег считал, что не мешало бы посетить один из научно-исследовательских институтов. Предложения, как видите, достаточно смелые, но мало осуществимые… Спорили долго. Наконец Таня нашла выход, который примирил всех:

— Купим по воздушному шарику, отправимся на Ленинские горы и побродим вокруг здания университета.

— То, да не то, — вздохнул Нулик.

— Зато по карману, — рассмеялся Сева.

Олег сразу же посоветовал не тратить попусту времени на явные нелепости Магистра.

Президент надулся:

— А я только что собирался сказать, что воздушный шар не мог взмыть вверх из-за потери карандаша.

— Собирался и сказал. Чего ж тебе ещё?

— Ещё то, что оболочка шара не могла превратиться в парашют.

— Ладно, — махнул рукой Олег. — С тобой каши не сваришь. Давай выговаривайся.

— Да нет, у меня все, — торопливо сказал Нулик. — Я только хотел уточнить: надевают ли в воздухе акваланги и имеются ли у парашюта стропила? Наверное, Магистр перепутал их со стропами? А теперь можно переходить к вулканологам.

— Какие там вулканологи! — фыркнул Сева. — Конечно, это были археологи. Они сами и выкопали ту яму, которую Магистр принял за кратер «непогашенного» вулкана. Неужели ты сразу не догадался?

— Догадался, да стоит ли говорить о таких «явных нелепостях»? — вывернулся президент.

— Но, но! Без хитростей! — погрозил пальцем Сева. — Сосчитай-ка лучше, сколько дней в миллионе секунд.

Нулик наморщил лоб и зашевелил губами.

— Миллион секунд… это будет… В общем, наверное, больше суток.

— Уж конечно, больше, — кивнул Сева, — но раз этак в двенадцать…

— Ого! Что же тогда миллиард минут, которые прожил Магистр? Лет двести, никак не меньше!

— Около двух тысяч, — поправил Олег.

Все засмеялись.

— Да, права была Единичка, — сказала Таня. — Для человека двух тысяч лет от роду Магистр действительно выглядит моложаво.

— Представляю себе, что было на земле триллион минут тому назад! Наверное, тогда ещё жили эти… неандертальцы? — спросил Нулик.

— Где там! Тогда ещё и питекантропов не было. Ведь триллион минут — значит два миллиона лет!

— А квадриллион минут тому назад, — продолжал приставать президент, — что было тогда?

— Эк куда тебя занесло! — отбивался Олег… — Ведь два квадриллиона минут — это около четырех миллиардов лет. А в это время и планеты-то нашей ещё не существовало.

— Подумать только! — удивился президент.

— На этот вопрос мы потратили по крайней мере 1000 секунд, — вмешался Сева. — Не довольно ли?

— В самом деле, — согласился Нулик. — Я только хотел спросить, будем мы выяснять, пошёл Магистр на восток или на запад?

— Не будем, — отрезал Сева.

— Поверим и на этот раз Единичке, — предложила Таня, — она не ошибается. А вот о несправедливых мальчиках и обиженной девочке поговорить стоит…

— И потому прошу слова, — перебил её Сева. — Мальчишки и в самом деле никого не обидели: ни себя, ни девочку. В этом легко убедиться. Ведь стоило им послушаться Магистра и удвоить девочкину порцию, как у них осталась бы только половина всех яблок. А девочка получила бы…

— Вторую половину! — подсказал Нулик.

— Значит, у девочки была четвёртая часть всего урожая, а у трех мальчиков…

— Три четверти! — снова подсказал президент.

— И никакой несправедливости. Яблоки были честно поделены на четыре части поровну.

Незаметно подошли мы к Ленинским горам и постояли некоторое время, любуясь великолепной панорамой зимнего заснеженного города. Но тут, заметив лыжный трамплин, Нулик захотел во что бы то ни стало съехать с него вместе с Пончиком. Таня не без труда отговорила его от этой затеи.

— Если хочешь непременно поломать голову, так уж лучше над тем, как Единичка в уме возводила в квадрат числа, оканчивающиеся пятёркой.

— И как она это делала? — поинтересовался малыш.

— Как? Очень просто. Допустим, надо возвести в квадрат число 75. Отделяем мысленно число единиц, то есть пятёрку, а число десятков — 7 — умножаем на число, следующее за семёркой, то есть на восемь. Семью восемь — 56. Теперь к этому произведению приписываем справа квадрат пяти — 25. Вот и ответ: 75^2=5625. Быстро и просто!

Нулик пришёл в восторг от остроумного способа и тотчас же принялся возводить в квадрат число 65: отделив пятёрку, умножил 6 на 7, получил 42 и приписал 25. И представьте себе, ответ получился точный: 4225.

Сева, однако, заметил, что это легко и просто с двузначными числами. А вот если взять трехзначное…

— Попробуйте в уме возвести в квадрат 615. Ведь для этого надо помножить 61 на 62. И не на бумажке, а в уме! А это и долго и нудно…

Все согласились, что Единичкин способ хорош только для двузначных чисел.

— Но ведь она возводила в квадрат и трехзначные, — напомнил Нулик. — Но каким образом?

Сева пожал плечами:

— Откуда я знаю? Об этом надо бы спросить у неё.

— Надо бы, — согласился президент, — да где она?

— Не так далеко, как ты думаешь, — сказал я, медленно засовывая руку в карман.

Ребята переглянулись.

— Вы хотите сказать… она там? — с запинкой произнёс Нулик, заворожённо следя за моей рукой.

Я не мог не улыбнуться.

— Успокойся. Всего только письмо от неё. В ту же секунду члены КРМ, издав какой-то поросячий визг, повисли на мне как связка бананов.

В общем, прошло не менее минуты, пока письмо, переходя из рук в руки, очутилось наконец у Тани и все успокоились настолько, что она смогла его прочитать.

ПИСЬМО ЕДИНИЧКИ

«Дорогие члены Клуба Рассеянного Магистра — Таня, Сева, Олег, Нулик и, конечно, Пончик! Мне уже очень давно хочется лично познакомиться с вами. Надеюсь, это удастся скоро — как только я вернусь домой. А пока познакомимся письменно.

Я по-прежнему путешествую с Магистром. Мы с ним очень подружились. В общем, он хороший и добрый. И умный. Да-да, не смейтесь. Разве виноват человек, что родился таким рассеянным! Думаю, и мы с вами не всегда так уж внимательны. Признаться, я тоже частенько посматриваю на уроках по сторонам, а когда меня вдруг спросят, отвечаю невпопад. А пишу я письмо потому, что вам иначе не догадаться, как возводить в квадрат трехзначные числа в уме. (Не догадаться потому, что способ выдумала я сама.)

Следите за мной внимательно. Возьмём число 215 и возведём его в квадрат. Сперва мысленно отделим, только не одну, а две последние цифры — 15. Далее узнаем, сколько в этом отделённом числе заключено пятёрок. Ясно, три. Припишем эту тройку к цифре 2, оставшейся в числе 215 слева. Получаем 23. Умножим 23 все на ту же двойку: 23*2=46. А дальше остаются пустяки. Припишем к числу 46 квадрат отделённой части — 15, он равен 225. (Это вы уже, вероятно, запомнили, возводя в квадрат двузначные числа.) И вот окончательный ответ: 215^2=46225. Ну как, ловко? Поупражняйтесь-ка сами!

Я теперь буду вам часто писать. Жаль только, что не могу дать своего обратного адреса: ведь мы с Магистром никогда не знаем, где очутимся завтра! Ну, всего вам хорошего. До свидания.

Единичка».

Единичкин способ понравился, и все тут же стали проверять его на практике. Сева, например, стал возводить в квадрат недавно избранное им число 615. Отделил 15, установил, что в нём содержатся три пятёрки, и приписал тройку справа от шести: 63. Далее умножил 63 на шесть, то есть на оставшееся после отделения число: 63*6=378. Ребята внимательно следили за его рассуждениями. Затем по известному уже правилу Сева возвёл в квадрат 15, получил, естественно, 225 и приписал это число к числу 378.

И получилось 378 225.

А вот у Тани произошла заминка. Она стала возводить в квадрат 435. Как и полагается, отделила 35 (в этом числе 7 пятёрок). Приписала семёрку к четвёрке и умножила на четыре: 47*4=188. Быстро возвела в квадрат 35, получила 1225, а дальше…

— Чепуха получается!

В самом деле, приписав к 188 число 1225, Таня получила явно нелепый ответ, раз в 10 больше возможного: 1881225!

— Выходит, в Единичкином способе есть какой-то изъян, — грустно заключила она. — Жаль!

— Никакого изъяна, — успокоил я Таню. — Дело в том, что приписывать справа можно только трех-, но не четырехзначные числа. А у тебя-то получилось четырехзначное — 1225.

— Не могу же я сделать из него трехзначное! — вспылила Таня.

— И не надо! Припиши только последние три цифры — 225, а единицу прибавь к числу слева — к 188. Получишь 189. Вот к ста восьмидесяти девяти и приписывай теперь 225. И получишь 189225.

— И как это вы догадались? — позавидовал Нулик. — Только мне-то нужно точное математическое доказательство. Знаете сами, без доказательств я ничему не верю.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.