Магистр рассеянных наук (математическая трилогия). - Владимир Артурович Левшин Страница 19
Магистр рассеянных наук (математическая трилогия). - Владимир Артурович Левшин читать онлайн бесплатно
— В том-то и дело, что ни в каком, — усмехнулся Сева. — Проксима входит в созвездие Центавра, которое не имеет к Зодиаку никакого отношения.
— А Центавр — тоже зверь? — спросил Нулик.
— Как тебе сказать… — замялся Сева, — наполовину. Были такие существа в древнегреческой мифологии: центавры — иначе кентавры. Торс у кентавра человеческий, а всё остальное — лошадиное.
— Гибрид, — сказал Нулик.
— Вот в созвездии этого гибрида и находится маленькая, еле заметная звёздочка Проксима. Вероятно, поэтому Магистр сказал, что она самая далёкая. На самом деле Проксима среди звёзд — наша ближайшая соседка. Недаром «проксима» по-гречески и значит «ближайшая». И свет от неё идёт к нам не миллиарды лет, как утверждал Магистр, а всего примерно четыре с четвертью года.
Нулик только свистнул.
— Вот так «ближайшая»! Сколько же до неё километров?
— А ты сосчитай, — поддразнила Таня. — Как известно, свет за одну секунду пробегает 300 000 километров. Сколько же километров проделает он за четыре с четвертью года?
— Для сравнения не мешает тебе знать, — добавил Сева, — что от Солнца до нас всего каких-нибудь 150 миллионов километров, и свет пробегает этот путь за 8 минут.
— Вот именно, за 8 минут, — подхватила Таня, — а не за 8 секунд, как думает наш рассеянный математик…
— Не пора ли нам, однако, приземлиться и перейти к разбору Магистрова дома, —вмешался Олег.
— Не успел человек построить дом, а его уже разбирают, — сострил Нулик.
Таня засмеялась:
— Кто ж виноват, что бедный строитель запутался в трёх соснах?
— Что — в трёх! Он даже в двух запутался, — добавил Сева, никогда не упускавший возможности скаламбурить. — Ведь Магистр утверждает, что можно построить не только трёхстенный, но и двухстенный дом.
— К счастью, он отказался от своей мысли, — сказала Таня, — поэтому займёмся наконец трёхстенным домом. Единичка, конечно, была права, когда говорила, что именно медиана, а не средняя линия, делит пополам площадь треугольника.
— Медиана! Средняя линия! — негодовал Нулик. — Нельзя ли выражаться яснее?
Таня подобрала несколько прутиков, выложила треугольник, а потом проложила прутик из одной вершины треугольника до середины противоположной стороны.
— Вот это и есть медиана треугольника, — сказала она.
— Ага, — сообразил Нулик, — выходит, таких медиан можно провести в треугольнике три, из каждой вершины по одной.
— Правильно, — подтвердила Таня и тем же прутиком соединила середины двух сторон треугольника.
— А это уж средняя линия! — догадался Нулик и тут же сам проложил две другие средние линии в треугольнике.
— Как видишь, ничего трудного, — сказала Таня. — Тогда продолжим. Магистр спутал равные треугольники с равновеликими. Ведь равные треугольники, если их наложить один на другой, обязательно совпадут, а для равновеликих это совсем не обязательно. Обязательно у них должны быть равны только площади. А теперь, Нулик, думаю, ты и сам докажешь, что не средняя линия, а именно медиана делит треугольник на два равновеликих.
Президент был польщён, но всё-таки отложил доказательство до другого раза. Он, видите ли, проголодался… Пончик, подтверждая тонкий намёк своего хозяина, жалобно заскулил…
Мы извлекли из рюкзаков свои припасы и принялись за еду.
Что может быть приятнее завтрака в лесу? Ты сидишь на земле в неудобной позе, ешь холодные сосиски, запиваешь лимонадом прямо из бутылки, а над тобой качаются зелёные ветки и вовсю заливается птичья самодеятельность…
«Но лесенка кончается, ведь есть всему конец…» Так, кажется, поётся в известной детской песне? Перерыв кончился, заседание возобновилось.
Нам предстояло разобраться в самом запутанном вопросе — о наскальных надписях, которые Магистр читал так, а Единичка почему-то этак. Кто же из них был прав?
На этот раз объяснять пришлось мне.
— Вся штука в том, что Магистр и Единичка читали наскальные числа в разных системах счисления. Магистр — в десятичной, а Единичка — в двоичной, то есть так, как было нужно.
— И как только она догадалась? — удивился Сева.
— На то она и Единичка, — ответил я, не моргнув глазом.
— А что прикажете делать нам, простым смертным?
— Хорошо, — сжалился я. — Давайте разберёмся. По-моему, сами названия говорят о том, что в десятичной системе участвуют все десять цифр, а в двоичной — только две. Как мы записываем числа в десятичной системе? Мы разбиваем их на разряды. Разряд единиц, разряд десятков, сотен, тысяч и так далее. При этом каждый следующий разряд в десять раз больше предыдущего. Вот, например, число 425. Что это такое? Это сумма пяти единиц, двух десятков и четырёх сотен. Значит, это число можно написать и так:
4×100 + 2×10 + 5 = 425.
А если вспомнить, что 100 равно десяти в квадрате, десять равно десяти в первой степени и, наконец, единица равна десяти в нулевой степени (ведь всякое число в нулевой степени равно единице), то число 425 может быть записано и так:
4×102 + 2×101 + 5×100 = 425.
Точно так же записываются числа в двоичной системе, только место десятков здесь занимают двойки в тех же степенях. Так, число, которое в десятичной системе читается как десять, в двоичной читается как два. Ведь в этой системе
10 = 1×21 + 0×20, то есть двум.
А число 110 в десятичной системе не что иное, как 6 в двоичной системе:
110 = 1×22 + 1×21 + 0×20, то есть шести.
Ну, а теперь вы и сами разберётесь в разночтениях Магистра и Единички.
— Забавная система, — сказал Сева.
— Не только забавная, но и полезная. Ты ведь уже знаешь, что двоичная система принята в большинстве быстродействующих счётных машин.
— Это и я знаю, — обрадовался Нулик. — Нуль означает «нет», а единица — «да»…
Впрочем, президент не стал вдаваться в подробности. Он решил записать число 29 в двоичной системе и добился-таки своего, написал: 11 101.
В самом деле: 11 101 = 1×24 + 1×23 + 1×22 + 0×21 + 1×20, а это в сумме даёт 29.
Ребята наперебой стали переводить числа из одной системы в другую. Похоже, этому не было
Жалоба
Напишите нам, и мы в срочном порядке примем меры.