Михаил Бармин - Общая и Неорганическая химия с примерами решения задач Страница 2
Михаил Бармин - Общая и Неорганическая химия с примерами решения задач читать онлайн бесплатно
Основания бывают растворимые в воде, малорастворимые и практически нерастворимые. Растворимые в воде основания называют щелочами.
По числу гидроксогрупп определяют кислотность основания. Так NaOH, KOH однокислотные основания; Ca(OH)2, Fe(OH)2 – двухкислотные; Fe(OH)3, Al(OH)3 – трехкислотные.
Основания двух– и более кислотные диссоциируют ступенчато:
1 ступень Ca(OH)2 CaOH1+ + OH1-
2 ступень CaOH1+ Ca2+ + OH1-
Получение оснований
Растворимые основания можно получить при взаимодействии щелочного (IА подгруппа) или щелочно-земельного (IIА подгруппа) металла с водой или оксида металла с водой:
2Na + 2H2O = 2NaOH + H2
Na2O + H2O = 2NaOH
Ca+2H2O=Ca(OH)2+H2
2) Малорастворимые основания получаются при взаимодействии соли соответствующего катиона с растворимым основанием:
FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4
Свойства оснований
Неорганические основания являются твердыми веществами, за исключением гидроксида аммония. Растворы оснований мыльные на ощупь, изменяют окраску индикатора фенолфталеина в малиновый цвет, а лакмуса – в синий.
Гидроксиды калия и натрия устойчивы к нагреванию. Большинство оснований разлагаются при нагревании на воду и соответствующий оксид
2.ОСНОВАНИЯ, КИСЛОТЫ, СОЛИ.
2.1Основания
По теории электролитической диссоциации к основаниям относятся электролиты, при электролитической диссоциации которых в качестве анионов образуются только гидроксид-ионы.
Кислотные оксиды взаимодействуют с основными оксидами и гидроксидами. В результате этого взаимодействия образуются соли:
SO3 + CaO = CaSO4
SO3 + Ca(OH)2 = CaSO4 + H2O
К амфотерным относят оксиды, которые могут проявлять свойства как основных оксидов, так и кислотных. То есть амфотерный оксид может взаимодействовать как с кислотой, так и с основанием. Амфотерные оксиды образуются некоторыми металлами в степени окисления +2 (BeO, ZnO, SnO, PbO) и почти всеми металлами в степени окисления +3 (Al2O3, Cr2O3).
ZnO + 2HCl = ZnCl2 + H2O
ZnO + 2NaOH = Na2ZnO2 + H2O
цинкат натрия
Амфотерным оксидам соответствуют амфотерные гидроксиды.
Если металл может иметь несколько степеней окисления, то с повышением степени окисления основные свойства его оксидов будут убывать, а кислотные усиливаться. Так MnO основной оксид, MnO2 амфотерный, а Mn2O7 кислотный.
Оксиды могут быть получены разными способами:
окисление простых веществ
4P + 5O2 = 2P2O5
2Mg + O2 = 2MgO
Cu + 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O
конц.
C + 4HNO3 = CO2 + 4NO2 + 2H2O
конц.
окисление сложных веществ
CH4 + 2O2 = CO2 + 2H2O
разложение сложных веществ
CaCO3 = CaO + CO2
2Cu(NO3)2 = 2CuO + 4NO2 + O2
Cu(OH)2 = CuO + H2O
2Fe(OH)3 = Fe2O3 + 3H2O
Все общие химические свойства оснований обусловлены наличием в них гидроксогрупп ОН-:
основания взаимодействуют с кислотами (реакция нейтрализации):
KOH + HCl = KCl + H2O
K+ + OH- + H+ + Cl- = K+ + Cl- + H2O
OH- + H- = H2O
основания реагируют с кислотными оксидами с образоваием соли и воды:
2NaOH + CO2 = Na2CO3 + H2O
2Na + 2OH– + CO2 = 2Na+ + CO32- + H2O
2OH- + CO2 = CO32- + H2O
растворимые основания реагируют с амфотерными оксидами и гидроксидами:
2NaOH + Al2O3 + 7H2O =Na[Al(OH)4(H2O)]
NaOH + Al(OH)3 + 2H2O = Na[Al(OH)4(H2O)2]
растворимые основания реагирует с растворимыми солями с образованием нерастворимых оснований.
2KOH + CuSO4 = Cu(OH)2 + K2SO4
2K+ + 2OH- + Cu2+ + SO42- = Cu(OH)2 + 2K+ + SO42-
2OH- + Cu2+ = Cu(OH)2
или
KOH + NH4Cl = KCl + NH4OH
K+ + OH- + NH4+ + Cl- = K+ + Cl- + NH4OH
OH– + NH4+ = NH4OH.
кислоты взаимодействуют с солями, если в результате реакции образуется или слабый электролит, или малорастворимое твердое, или газообразное вещество:
а) Na2CO3 + 2HCl = 2NaCl + H2CO3 H2O
2Na+ + CO32- + 2H+ + 2Cl- = 2Na+ + 2Cl + H2CO3
CO32- + 2H+ = H2CO3 CO2
б) AgNO3 + HCl = AgCl + HNO3
Ag+ + NO3- + H+ + Cl- = AgCl + H+ + NO3-
Ag+ + Cl- = AgCl
Кроме того, существуют неорганические кислоты – сильные окислители: HNO3, H2SO4 (концентрированная). Эти кислоты обладают особыми свойствами, которые определяются не катионами водорода, а высокой степенью окисления атомов элемента, образующего кислоту. Эти кислоты могут реагировать и с металлами, стоящими в ряду активности после водорода (кроме золота и платины) и с неметаллами. Подробно свойства этих кислот рассматриваются во II части учебника.
H2S – сероводородная кислота.
Название кислородсодержащей кислоты зависит от степени окисления элемента, образующего кислоту. Если элемент образует кислоту в своей максимальной степени окисления, то к названию элемента добавляют окончание -ная или –вая и слово кислота:
H2SiO3 – кремниевая кислота,
H2SO4 – серная кислота.
Если элемент образует две кислоты, находясь в 2-х степенях окисления, то для кислоты с максимальной степенью окисления элемента в названии будет окончание –вая или –ная; а для минимальной степени окисления окончание –истая:
HNO3 – азотная кислота, HNO2 – азотистая кислота;
H2SO4 – серная кислота, H2SO3 – сернистая кислота.
Если же элемент образует более, чем две кислоты, находясь в разных степенях окисления, то по мере понижения степени окисления элемента, образующего кислоту суфиксы и окончания будут меняться в следующем порядке:
–вая, -ная
–новатая
–истая
–новатистая.
HClO4 – хлорная кислота,
HClO3 – хлорноватая кислота,
HClO2 – хлористая кислота,
HClO – хлорноватистая кислота.
Некоторые элементы, находясь в одной и той же степени окисления, могут образовывать кислоты, различающиеся на группу (H2O). В таком случае кислота с меньшим числом атомов кислорода и водорода называется мета-, а с большим орто– кислотой:
H3PO4 – ортофосфорная кислота,
HPO3 – метафосфорная кислота,
Кроме этого, используют и традиционные названия:
HCl – соляная кислота, HF – плавиковая кислота.
По числу катионов водорода определяют основность кислоты: HNO3 – одноосновная кислота, H2SO4 – двухосновная кислота, H3PO4 – трехосновная кислота. Двух– и более основные кислоты диссоциируют в водных растворах ступенчато.
Сила кислоты определяется как способность кислоты к электролитической диссоциации.
В периодической системе в периоде слева направо кислотные свойства гидроксидов элементов усиливаются.
Если один и тот же элемент образует несколько кислот, то с уменьшением степени окисления элемента уменьшается сила кислоты, то есть способность отдавать протон. Все это объясняется электронным строением молекулы и взаимным влиянием атомов в молекуле. Чем больше полярность связи Н – О, тем легче происходит электролитическая диссоциация по типу кислоты. А эта связь тем полярнее, чем меньше разница электроотрицательностей кислорода и элемента, образующего кислоту. В случае, когда один и тот же элемент образует кислоты, находясь в разных степенях окисления, сильнее будет кислота, образованная элементом в большей степени окисления.
Zn + 2HCl = ZnCl2 + H2
Zn + 2H+ + 2Cl- = Zn2+ + 2Cl- + H2
Zn + 2H+ = Zn2+ + H2
В качестве примера взаимодействия металлов с растворами кислот не следует брать такие активные металлы, как калий или натрий, так как эти металлы очень активны и будут реагировать с молекулами воды:
2Na + 2H2O = 2NaOH + H2
2Na + 2H2O = 2Na+ + 2OH- + H2
и далее OH– + H+ = H2O
кислоты взаимодействуют с основными оксидами:
2HCl + CaO = CaCl2 + H2O
2H+ + Cl- + CaO = Ca2+ + 2Cl- + H2O
2H+ + CaO = Ca2+ + H2O
кислоты взаимодействуют с основаниями:
2HCl + Ca(OH)2 = CaCl2 + 2H2O
Жалоба
Напишите нам, и мы в срочном порядке примем меры.