Магистр рассеянных наук (математическая трилогия). - Владимир Артурович Левшин Страница 21
Магистр рассеянных наук (математическая трилогия). - Владимир Артурович Левшин читать онлайн бесплатно
Я уже взялся за ручку двери, но дверь оказалась запертой. На ней висел замок. А в него была засунута свёрнутая трубочкой бумажка. Единичка немедленно (она всё делает немедленно) прочитала:
«Дверь ведёт на Апори́йскую дорогу. И хоть длина дороги всего-навсего 1 километр, никто за 25 веков не смог пройти по ней до конца».
А на обороте было написано:
«Ключ находится у сторожа, в городе Эле́е. Номер телефона: одна вторая. Вызвать Зено́на. Просят зря не беспокоить».
Что значит «зря не беспокоить»? И что это за сторож, который живёт в другом городе? Пришлось позвонить этому Зенону. И вот какой разговор у меня с ним произошёл.
— Товарищ Зенон, — спросил я, — почему это никто не смог одолеть один несчастный километр вашей Апорийской… или как она там называется, дороги?
— Ясно почему, — ответил Зенон. — Надеюсь, Магистр (подумайте, он сразу узнал меня по голосу!), вы согласитесь, что тому, кто хочет дойти до конца пути, никак не миновать его середины?
— Что за вопрос! — возмутился я. — Как же можно дойти до конца, не пройдя середины?!
— В том-то и беда, — вздохнул Зенон. — Ведь когда вы дойдёте до середины пути, у вас останется ещё полпути. А у этого полпути тоже есть своя середина. И только вы дойдёте и до этой середины, как перед вами появится новая середина — середина оставшейся четверти пути. И так всё время! Сколько бы вы ни шли, перед вами всегда будет оставаться отрезок пути, а у него своя середина. Но вы же сами согласились, что, не одолев середины, нельзя дойти до конца. Вот и выходит, что одолеть Апорийскую дорогу невозможно!
Я так разволновался от этих рассуждений Зенона, что не сумел их опровергнуть. А тут ещё нас разъединили. Ох уж эти автоматические телефонные станции!
Но что было дальше!.. Единичка вытащила из своего кармана гвоздь (прямо как Том Сойер!), поковыряла гвоздём в замке, и… замок открылся! Я ахнуть не успел, как она выбежала на «непроходимую» Апорийскую дорогу и через несколько минут закричала издалека: «Я здесь! На самом конце!»
Молодец девчонка! Пристыдила-таки этого заумника Зенона.
Нет, что ни говорите, а странный остров ОАЗИС! Загадок на нём действительно много, а вот софизмов… что-то я ни одного не приметил. Может быть, эти самые софизмы перекочевали на другой остров?
Единичка стала укладывать вещи, а я поспешил на берег океана, чтобы найти какой-нибудь подходящий транспорт.
О радость! В нескольких метрах от меня, выстроившись в шеренгу вдоль берега, покачивались на воде двенадцать пустых бочек. Выбирай любую и плыви по воле волн! Авось куда-нибудь да выплывешь! Больше всего мне понравилась ярко-красная бочка — она была четвёртой слева.
Прибежавшая на мой крик Единичка запрыгала от восторга.
— Поплывём в этой, восьмой, красной бочке! — закричала она.
— Не в восьмой, а в четвёртой, — поправил я. — Это четвёртая бочка красная.
— Четвёртая слева, но зато восьмая справа, — возразила Единичка.
Выходит, из двенадцати бочек мы с Единичкой выбрали одну и ту же. Через минуту вещи наши были на судне и… Но об этом уж в следующий раз.
Седьмое заседание КРМ
началось без Пончика. Он вернулся к своим почтальонским обязанностям и отправился в Карликанию с письмом к Нуликовой маме-Восьмёрке.
— Конечно, волноваться обо мне маме не с чего, — сказал Нулик, — ведь я среди друзей! Но всё-таки не мешает написать ей, — она, наверное, так соскучилась…
На этом лирическая часть закончилась, и мы перешли к деловой.
— Как ты думаешь, Нулик, — спросила Таня, — если в фразе переставить слова, смысл её от этого изменится?
— Не думаю, — сказал Нулик. — «Я люблю мороженое» или «мороженое я люблю» — какая разница?
— Смысл, конечно, остался тот же, — согласилась Таня, — правда, несколько изменилась интонация. А если сказать «я не совсем понял правила деления» или «я совсем не понял правила деления» —это одно и то же?
— Что за экзамен? — возмутился Нулик.
— Не экзамен, а наглядный пример. Магистр спутал разность квадратов с квадратом разности двух чисел. В первом случае нужно сначала возвести каждое число в квадрат, а уж затем вычислить разность этих квадратов. Во втором — наоборот: надо сперва взять разность чисел, а уж потом возводить её в квадрат. А это совсем не одно и то же. Вот и Магистр, вместо того чтобы вычислить разность квадратов двух чисел — 500 и 498, вычислил квадрат их разности. Он вычел из первого числа второе, получил 2 и возвёл эту двойку в квадрат. Так у него в ответе и получилось 4.
— Понял! — закричал Нулик. — Надо было сперва возвести в квадрат 500, потом 498, а затем из одного квадрата вычесть другой. Только… не так это легко возвести в квадрат 498.
— А этого и не требуется, — сказала Таня. — Задача решается гораздо проще. Сперва сложим оба числа. Получим 998. Затем вычтем из одного числа другое. Получится 2. А теперь перемножим оба результата. Ответ — 1996. Просто и красиво.
— А главное, никакой затраты умственного труда! — восхитился Нулик и тут же принялся проверять Танино правило.
В общем, Нулик способный ребёнок, только очень уж самоуверенный…
— Ну и неуч этот Магистр! — негодовал он. — Не знать такого простого правила! А Единичка — молодец: сумела поддеть его на крючок! Я думаю, в музее она чихнула нарочно, чтобы мухи разлетелись.
— Вот мы сейчас к этим мухам и перейдём, — сказала Таня.
— Ну, здесь уж вам никакие правила не помогут! — позлорадствовал Нулик. — Раз три мухи разлетелись кто куда горазд, да ещё с разными скоростями, тут даже академик не скажет, когда они снова окажутся в одной плоскости.
— Хотя я и не совсем академик, — прищурился Сева, — но знаю всё-таки, что куда бы три мухи ни улетели, они всегда, каждое мгновение будут оставаться в одной общей плоскости. Это же основа геометрии!
— Интересно! — хихикнул президент.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.