Юрий Фиалков - Как там у вас, на Бета-Лире? Страница 4

Тут можно читать бесплатно Юрий Фиалков - Как там у вас, на Бета-Лире?. Жанр: Детская литература / Детская образовательная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Юрий Фиалков - Как там у вас, на Бета-Лире? читать онлайн бесплатно

Юрий Фиалков - Как там у вас, на Бета-Лире? - читать книгу онлайн бесплатно, автор Юрий Фиалков

Термин «рассеянный» тут употреблен отнюдь не в том смысле, в каком им описывают ротозейство известного обитателя улицы Бассейной, а в его изначальном значении, основывающемся на слове «сеять» — раздроблять.

Далеко не каждому элементу дано образовывать свои минералы. Лишь те счастливчики, которым природа предоставила пристанище в виде минерала, да еще достаточно распространенного, относятся к элементам более или менее доступным, а следовательно, нередким. Тем же бедолагам химическим элементам, которые не образуют сколько-нибудь распространенных минералов, суждено мыкаться по земной коре, «нигде гнезда не свивая». Будучи более или менее равномерно распределены в породах, они хотя и обладают большой суммарной массой, но масса эта как бы «размазана» по всему веществу земной коры.

От того, встречается ли тот или иной элемент в земной коре в компактном или рассеянном состоянии, в значительной степени зависит доступность этого элемента.

Поэтому не следует судить о редкостности элемента на основании количества строк, отведенных ему в учебнике химии, или даже по, казалось бы, более объективному критерию — стоимости. Нет, беспристрастным свидетелем здесь может быть только таблица распространенности элементов.

В некоторых — но только некоторых — случаях можно установить довольно тесную зависимость распространенности элемента от его химических свойств. Пожалуй, наиболее выразительная иллюстрация этой зависимости — инертные газы.

Сейчас так много и так усердно пишут о сравнительно недавно открытых химических соединениях инертных газов с некоторыми элементами, например фтором, что может создаться впечатление: у этих газов только и забот, что соединиться с каким-либо элементом. В действительности атому фтора позаимствовать электрон (непременное условие образования химической связи) у ксенона не легче, чем Ходже Насреддину было отбирать сумку с долговыми расписками у ростовщика Джафара. В обычных условиях (а элементарный фтор в природе не встречается) инертные газы продолжают оставаться теми химическими гордецами, какими их знает химия вот уже лет восемьдесят — со времени открытия.

Вот почему инертные газы встречаются в природе только в элементарном состоянии. Но в отличие от золота, которое тоже практически не образует минералов, инертные газы — это все-таки газы, и поэтому им уготовано место только и только в атмосфере.

А газы эти медленно, но неотвратимо уходят в мировое пространство. Это обстоятельство не должно внушать тревогу относительно грядущей нехватки кислорода. Скорее нужно опасаться не утечки воздуха, а тревожного загрязнения атмосферы двигателями всяких сгораний. Кислород пока еще исправно поставляет земная флора. Азот же непрерывно поставляется многочисленными земными вулканами. Но инертным газам подкрепления ждать неоткуда (об одном исключении из этого бесспорного утверждения будет рассказано в следующей главе). Поэтому не надо удивляться такой мизерной распространенности инертных газов. Скорее следует радоваться, что они еще сохранились на планете.

Впрочем, случай с инертными газами единичен. Общим считать его никак нельзя. Иначе следовало бы предположить, что элементы с близкими химическими свойствами должны характеризоваться и близкими величинами распространенности. А знаете ли вы, что по химическим свойствам радий достаточно сильно смахивает на кальций? Но самый разнесчастный перуанский индеец не во столько раз беднее мультимиллиардера, во сколько раз радия в земной коре меньше, чем кальция! Нет, в проблеме распространенности элементов на одних химических свойствах не сыграешь…

Чем больше, тем меньше

Хочу предложить читателям вместе со мной заняться поисками закономерностей, определяющих распространенность элементов в земной коре. Не может быть, чтобы мы в конце концов не выяснили, почему же на Земле кремния много, а золота мало. Случайно ли это или закономерно? Итак, ищем закон.

От чего отталкиваться, когда речь идет о химических элементах, известно: от периодической системы Менделеева. Вот и вывесим ее на стену так, чтобы она все время была перед глазами.

Начнем с первой группы менделеевской таблицы. Итак, щелочные металлы. Заглядывая в таблицу распространенности химических элементов, выпишем против названия каждого из щелочных металлов величины их содержания в земной коре (проценты, конечно, атомные).

Первого из щелочных металлов, лития, в земной коре маловато — 0,02 %. Да, по сравнению со следующими щелочными металлами, элементами-гигантами натрием (1,82 %) и калием (1,05 %), литий совсем бедный родственник. Впрочем, в семье щелочных металлов не один литий — голытьба: рубидия в земной коре еще меньше, чем лития (0,007 %), а цезия и вовсе самая малость (9∙105 %). Что же касается последнего из щелочных металлов, франция, то о его распространенности, которую и термином-то этим совестно назвать, уже говорилось. Закономерности как будто бы никакой нет. Сначала мало, затем много, а потом снова мало. Напоминает эрудицию школьника или студента до, во время и после экзамена. Позвольте, а если отбросить литий, то… То начинает проглядываться довольно определенная закономерность: содержание щелочного металла в земной коре убывает по мере повышения порядкового номера в периодической системе, или, что одно и то же, атомной массы.

Эту пока что еще довольно смутную догадку о связи распространенности элемента с его порядковым номером следует тут же проверить. Обратимся к соседней группе менделеевской системы. Металлы этой группы «сверху вниз» идут в таком порядке: магний, кальций, стронций, барий, радий. Выпишем в том же порядке колонку величин распространенности: 1,72 — 1,41 — 0,01 — 0,006 — 2∙10–12. Комментарии? Вот их-то как раз и не нужно! И так ясно: распространенность химического элемента падает по мере увеличения порядкового номера. Позвольте, но ведь это почти закон. Нет, почему «почти»? Это самый настоящий закон! И к тому же (отбросим ненужную скромность!) — фундаментальный закон.

Похоже, что мы с вами молодцы: найти новый закон природы, да еще фундаментальный, — достижение, что ни говорите, не будничное.

Теперь остается одно — поверить эту пока что не очень четко просматривающуюся гармонию геометрией: составим график зависимости распространенности от порядкового номера элемента, и тогда можно отдыхать с приятным сознанием выполненного долга и ожиданием грядущих почестей.

Но отдыха не предвидится. Почестей тем более. То, что получается на графике, можно определить кратким, но зато предельно для данного случая выразительным словом — хаос.

О какой закономерности можно здесь говорить?! Точки скачут, как шарики в машине для игры в спортлото, и похоже, что закономерностей на графике не больше, чем в этой же почтенной игре.

Тут можно привести весь классический комплект горестных поговорок («Торговали — веселились…», «Не кричи «гоп», пока…»), можно пройтись по полной гамме приличествующих случаю печальных вздохов, а можно и просто сокрушенно махнуть рукой и согласиться с тем, что наука — удел немногих гениев, да и то озаренных свыше. Но не стоит всего этого делать. Право, не стоит. Мы и так впали в один из самых больших грехов, какие могут быть присущи научному работнику. Сначала, натолкнувшись на два пусть любопытных, но частных факта, мы решили, что открыли общий закон. И естественно, возликовали. А потом, обнаружив, что действительность не желает подчиняться этому походя придуманному нами закону, пришли в уныние и решили, что ни о каких закономерностях вообще говорить не приходится.

Скажу сразу: подобные эмоционально-психологические амплитуды в какой-то мере извинительны влюбленному, но совершенно противопоказаны научной работе.

Поэтому на какое-то время загоним эмоции в дальний угол души и с максимальной деловитостью рассмотрим диаграммы распространенности элементов в земной коре.

Да, воистину «вначале был хаос»! Соединяя в различных сочетаниях точки на диаграмме, можно, как на средневековых картах неба, получить любые фигуры. Но до обобщений, да еще научных, здесь далеко. Поэтому не будем прибегать к такому малопочтенному занятию, напоминающему предновогоднее гадание засидевшихся девиц, а отметим факты бесспорные.

Прежде всего мы замечаем, что из двух соседних, то есть различающихся порядковым номером 1, элементов один обязательно содержится в земной коре в количестве, во много раз большем, чем другой. Отметив это, мы сразу обращаем внимание на то, что из двух элементов-соседей почти всегда более распространен элемент с четным порядковым номером.

Различие в распространенности четных и нечетных элементов особенно четко проявляется в начале периодической системы. Первые 14 четных элементов распространены в земной коре втрое больше, чем первые 14 нечетных. Да и то репутацию нечетных значительно поддерживает алюминий. Не будь содержание этого металла в земной коре так велико, дела нечетных были бы вовсе никудышными.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.