Яков Перельман - 101 головоломка Страница 14

Тут можно читать бесплатно Яков Перельман - 101 головоломка. Жанр: Детская литература / Прочая детская литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Яков Перельман - 101 головоломка читать онлайн бесплатно

Яков Перельман - 101 головоломка - читать книгу онлайн бесплатно, автор Яков Перельман

Рис. 95.

100. Два квадрата из одного

Мне привезли из Китая маленькую квадратную коробочку с танграмами, уложенными в ней вплотную двумя слоями; каждый слой представлял собой квадрат. Следовательно, из 7 танграмов можно сложить не только один квадрат, но и два одинаковых.

Как это сделать?

Решения задач 91-100

91. Вот так складывают фигуры из этой задачи.

Рис. 96.

92. Решение задачи видно из рис. 97.

Рис. 97.

93. А решение этой задачи показано на рис. 98.

Рис. 98.

94. Способ сложения силуэтов показан на рис. 97.

Рис. 99.

95. Все фигуры, изображенные на рис. 99, можно сложить из танграмов (рис. 100), за исключением одной – лебедя. На рис. 101 показано, какие очертания имеет фигура лебедя, если ее правильно составить из танграмов.

Рис. 100.

Рис. 101.

96. Все силуэты имеют одинаковую площадь, так как составлены из одних и тех же частей. Как бы ни различались между собой силуэты, все они представляют собой видоизменения первоначального квадрата и, конечно, равны ему по площади.

97. Решение задачи представлено на рис. 102.

Рис. 102.

98. Каждый из больших треугольников по площади равен 1/4 квадрата; средний треугольник вдвое меньше и, следовательно, равен 1/8 площади квадрата. Каждый маленький треугольник вдвое меньше среднего, и значит, его площадь равна 1/16 площади квадрата. Параллелограмм и квадратик можно сложить из двух маленьких треугольников; следовательно, площадь каждой из этих фигур равна 1/8 площади исходного квадрата.

Рис. 103.

99. На рис. 103 показано, как составлены обе фигуры. Первая, безногая фигура, чуть-чуть толще второй – на узкую полоску, отрезаемую линией АВ. Зато вторая фигура имеет ногу, и площадь этой «ноги» в точности равна площади избыточной полоски.

100. Один из двух квадратов образуют два больших треугольника. Второй нетрудно сложить из остальных 5 танграмов.

Примечания

1

* Данные относятся к 1924 г. – Прим. ред.

2

Козьмы Пруткова.

3

Точнее, не перегнать, а отстать, т. е. двигаться по поверхности Земли в сторону, обратную ее движению, так быстро, чтобы увеличить для себя продолжительность суток.

4

Человек может перегнать Землю и пешком – в 50 км от полюса.

5

Отсюда ясно, между прочим, что часто встречающееся в учебниках определение поверхности как «границы тела» несостоятельно; поверхность Мебиуса никакого тела ограничивать не может, а между тем это – поверхность…


Конец ознакомительного фрагмента

Купить полную версию книги
Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.