Яков Перельман - Веселые задачи. Две сотни головоломок Страница 6
Яков Перельман - Веселые задачи. Две сотни головоломок читать онлайн бесплатно
48. Куда девался гость?
Можно ли посадить 11 гостей на 10 стульев так, чтобы на каждом стуле сидело по одному человеку? Вы думаете — нельзя? Нет, можно — надо только умеючи взяться за дело.
Поступите так. Первого гостя посадите на первый стул. Затем попросите 11-го гостя сесть временно на тот же первый стул. Усадив этих двух гостей на первый стул, вы усаживаете:
3-го гостя на 2-й стул
4-го —»-»— 3-й —»—
5-го —»-»— 4-й —»—
6-го —»-»— 5-й —»—
7-го —»-»— 6-й —»—
8-го —»-»— 7-й —»—
9-го —»-»— 8-й —»—
10-го —»-»— 9-й —»—
Как видите, остается свободным 10-й стул На него вы и посадите 11-го гостя, который временно сидел на 1-м стуле. Теперь вы счастливо вышли из затруднительного положения: у вас рассажены все 11 гостей на 10 стульях.
А все-таки, куда девался один гость?
49. Без гирь
Вам принесли на дом 10 кг сливочного масла. Вы желаете купить всего только 5 кг. У одного соседа нашлись весы с коромыслом, но гирь нет ни у вас, ни у разносчика и ни у одного из соседей. Можете ли вы без всяких гирь отвесить 5 кг от 10?
50. На неверных весах
Представьте себе, что когда вы догадались, наконец, как отвесить масло без гирь, входит ваш сосед, ссудивший вам весы, и сообщает, что весы его очень ненадежны — на верность их полагаться нельзя.
Рис. 42. Взвешивание без гирь.
Можете ли вы даже и на неверных весах, притом без гирь, отвесить правильно 5 кг от 10-килограммового куска?
Решения задач 41-50
41. На вопрос часового: «Зачем идешь?» — крестьянин дал такой ответ:
— Иду, чтобы быть повешенным на этой виселице. Такой ответ поставил часового в тупик. Что он должен сделать с крестьянином? Повесить? Но, значит, крестьянин сказал правду, за правдивый же ответ было приказано не вешать, а топить. Но и утопить нельзя: в таком случае крестьянин солгал, а за ложное показание предписывалось повесить.
Так часовой и не смог ничего поделать со сметливым крестьянином.
42. Вытаскивая жребий, осужденный поступил так: вынул одну бумажку из ящика и, никому не показывая, разорвал ее. Судьи, желая установить, что было написано на уничтоженной бумажке, извлекли из ящика оставшуюся бумажку со словом «смерть». Следовательно, — рассуждали судьи, — на разорванной бумажке было написано «жизнь» (они ведь ничего не знали о заговоре). Готовя невинно осужденному верную гибель, враги обеспечили ему спасение.
43. Приговор был таков: учителю в иске отказать, но предоставить ему право вторично возбудить дело на новом основании — именно на том, что ученик выиграл свою первую тяжбу. Эта вторая тяжба должна быть решена, бесспорно, уже в пользу учителя.
44. Солдаты сели… друг другу на колени! Выстроились по кругу и каждый сел на колени своего соседа. Вы думаете, что первому солдату пришлось все-таки сидеть на болоте? Ничуть — при круговом расположении вовсе и нет этого «первого» солдата: каждый опирается на колени своего соседа, и кольцо сидящих замыкается. Если это представляется вам сомнительным, попробуйте с несколькими десятками товарищей сесть таким образом в кольцо. Вы сможете на деле убедиться, что изобретательный солдат действительно нашел выход из положения.
45. Пришлось сделать 6 следующих переправ:
1-я переправа. Оба мальчика подъезжают к противоположному берегу, и один из них привозит лодку к разведчикам (другой остается на том берегу).
2-я переправа. Мальчик, привезший лодку, остается на этом берегу, а в челнок садится первый солдат, который и переправляется на другой берег. Челнок возвращается с другим мальчиком.
3-я переправа. Оба мальчика переправляются через реку, один из них возвращается с челноком.
4-я переправа. Второй солдат переправляется на противоположный берег. Челнок возвращается с мальчиком.
5-я переправа — повторение 3-й.
6-я переправа. Третий солдат переправляется на противоположный берег. Челнок возвращается с мальчиком, и дети продолжают прерванное катание по реке. Теперь все три солдата находятся на другом берегу.
46. Нелепый результат, который мы получили, исчисляя своих предков, объясняется тем, что нами упущено из виду одно весьма простое обстоятельство. Мы не приняли в расчет, что наши отдаленные предки могут быть и в кровном родстве между собой и, следовательно, иметь общих предков. Мой отец и моя мать, может, уже в 5-м или 6-м поколении назад имели общего деда, который, возможно, был и вашим предком, читатель. Это соображение разбивает все наши расчеты и уменьшает несметные полчища наших отдаленных предков до весьма скромной цифры, при которой не может быть и речи о тесноте.
47. Младший брат, пойдя назад по движению, увидел идущий навстречу вагон и вскочил в него. Когда этот вагон дошел до места, где ожидал старший брат, последний вскочил в него. Немного спустя тот же вагон догнал идущего впереди среднего брата и принял его. Все три брата очутились в одном и том же вагоне — и, конечно, приехали домой одновременно.
Однако благоразумнее всего поступил старший брат: спокойно ожидая на одном месте, он устал меньше других.
48. Исчезнувший гость — это второй гость, который был незаметно пропущен при распределении стульев: после 1-го и 11-го гостя мы сразу перешли к 3-му и следующим, миновав 2-го. Оттого-то нам и удалось разместить 11 гостей на 10 стульях, по одному человеку на каждом.
Рис. 43. Куда девался исчезнувший гость?
49. Задача сводится в сущности к тому, чтобы разделить 10 кг масла на две равные по весу части. Положите на каждую чашку по бумажному листу и накладывайте на них масло до тех пор, пока 10 кг не распределятся поровну между ними. Ясно, что теперь на каждой чашке ровно 5 кг — если только весы правильны.
Рис. 44. Как разделить поровну 10 кг масла на правильных весах?
50. И на неверных весах можно достичь того же, но более сложным путем. Сначала надо разделить десять килограммов масла на две части так, чтобы они были приблизительно (на глаз) равны. Затем берут одну из этих частей, кладут на чашку весов; на другую же чашку накладывают камешков или чего угодно до тех пор, пока чашки не будут уравновешены. Тогда снимают с чашки первую часть масла и вместо нее кладут вторую. Если окажется при этом, что чашки весов остаются на прежнем месте, то, значит, обе части масла равны, так как заменяют одна другую по весу. В таком случае, разумеется, каждая из них весит ровно 5 кг.
Рис. 45.
Если же чашки не будут на одном уровне, то надо от одного куска переложить немного масла на другой и повторять это до тех пор, пока обе порции не будут вполне заменять друг друга на одной и той же чашке весов.
Подобным же образом можно действовать и при неверных пружинных весах: перекладывать масло из одного пакета в другой до тех пор, пока оба пакета не будут оттягивать указатель весов до одной и той же черты (хотя эта черта, может, и не стояла против 5 кг).
Искусное разрезание и сшивание
Семь раз отмерь — один раз отрежь.
51. Флаг морских разбойников
Вы видите здесь флаг морских разбойников (рис. 46). Двенадцать продольных полос на нем обозначают, что в плену у пиратов находятся 12 человек. Когда удается захватить новых пленных, пираты подшивают к флагу соответствующее число новых полос. Напротив, при утрате каждого пленного они убирают одну полосу.
Рис. 46. Пиратский флаг.
На этот раз пираты потеряли двух пленных и, следовательно, должны перешить флаг так, чтобы полос было не 12, а 10.
Можете ли вы указать простой способ разрезать флаг на две такие части, чтобы после сшивания их получился флаг с 10 полосами? При этом не должно пропасть ни клочка материи и флаг должен сохранить прямоугольную форму.
52. Красный крест
У сестры милосердия имелся квадратный кусок красной материи, из которого нужно было сшить крест (рис. 47). Она хотела так перешить квадрат, чтобы использовать всю материю. После долгих поисков ей удалось разрезать квадрат на 4 куска, из которых она и сшила крест. В нем было всего два шва, каждый в виде прямой линии. Попробуйте сделать то же самое из квадратного куска бумаги.
Рис. 47. Красный крест из красного квадрата.
53. Из лоскутков
У другой сестры милосердия были такие обрезки красной материи, какие изображены на рис. 48.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.