Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре Страница 11
Олег Арсенов - Григорий Перельман и гипотеза Пуанкаре читать онлайн бесплатно
-44-
тематика — поскольку она говорит нам о составляющих физического мира и поскольку наше знание этого мира может быть выражено только в математических понятиях — столь же реальна, как столы и стулья. Границы нашего знания реальности существуют, но они постепенно расширяются.
Вполне возможно, что человек, введя некоторые ограничения и даже искусственные понятия, только таким способом сумел «навести порядок» в природе. Созданная им математика может оказаться не более чем рабочей схемой. Не исключено, что природа в действительности устроена гораздо сложнее и в ее основе нет никакого «плана». Но и тогда математика как метод исследования, описания и познания природы не знает себе равных. В некоторых областях ею исчерпывается все, что мы знаем. Если она и не есть сама реальность, то по крайней мере подходит к таковой ближе, чем любая другая область человеческой деятельности.
Какое влияние оказала философия конвенционализма на формулировку и последующий анализ физико-математических исследований Пуанкаре и как это связано с его релятивистскими воззрениями?
Рис. 17. Континуальные представления Пуанкаре неевклидова пространства-времени
Пуанкаре в своих работах подчеркивал, что видимая нами реальность представляет собой лишь проекцию внешнего мира на четырехмерный пространственно-временной континуум.
-45-
Тут есть два взаимодополняющих взгляда. Во-первых, поскольку ученый всегда «примерял» как метафизик свои математические изыскания к реальной структуре Мироздания, в самой формулировке тех же топологических задач видится некий идеологический подтекст. Привнося новый принцип геометрической эволюции реальности, Пуанкаре в очередной раз демонстрировал перспективную, по его мнению, возможность самых различных интерпретаций своих топологических построений, рассматривая научную теорию как некую чисто логическую структуру, относительно которой теряет смысл само понятие истинности.
Во-вторых, связывая вместе метафизическое содержание открытых им принципов релятивизма, ученый допускал, что понятия теории относительности вполне могут быть абстрагированы от своей реальной почвы и войти в аппарат описания динамической эволюции топологии Вселенной.
-46-
Гл. 3 Гипотеза Пуанкаре
«Математика — не просто создание человеческого разума, она испытывает на себе сильное влияние тех культур, в рамках которых развивается. Математические "истины" зависят от людей ничуть не меньше, чем восприятие цвета или язык».
Людвиг ВиттенштейнРис. 18. Топологическое многообразие Пуанкаре
Всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере.
«С того момента, как гипотеза Пуанкаре была сформулирована более ста лет назад, сообщения о ее доказательстве появлялись почти ежегодно. Анри Пуанкаре, двоюродный брат Раймонда
-47-
Пуанкаре, президента Франции во время Первой мировой войны, был также одним из талантливейших математиков девятнадцатого века. Худой, близорукий, известный своей невероятной рассеянностью, Пуанкаре сформулировал знаменитую задачу за восемь лет до своей смерти, в 1904 году. Формулировка проблемы в качестве побочного вопроса была засунута в конец шестидесятипятистраничной статьи.
Пуанкаре не смог добиться сколько-нибудь заметного прогресса в решении этой проблемы. "Cette question nous entrainerait trop loin" ("Этот вопрос уводит нас далеко в сторону"), — писал он. Пуанкаре был основателем топологии — науки, также называемой "геометрией резинового листа" из-за ее ориентации на исследование внутренних свойств различных пространств».
Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решенияСтрасть великого французского ученого к построению фундаментальных основ математической науки и его релятивизм, отраженный в зеркале собственного философского учения — конвенционализма, привели в итоге к довольно необычной гипотезе строения Мира. В истории науки эту абстрактную математическую проблему, приводящую к важнейшим космологическим выводам, так часто и называют — топологическая гипотеза (теорема, задача, проблема) Пуанкаре.
С помощью молодого математика и непременного члена клуба знатоков «Что? Где? Когда?» Сергея Игоревича Николенко вспомним, что все началось с исследований, которые Пуанкаре вел в области алгебраической геометрии. Он работал над одним из краеугольных камней этой науки — теорией гомологии, особого класса топологических инвариантов. В 1900 году он опубликовал статью, в которой доказывал, что если у трехмерной поверхности гомология совпадает с гомологией сферы, то и сама поверхность — сфера; на самом деле это утверждение даже более сильное, чем утверждение гипотезы Пуанкаре.
Однако в его рассуждения вкралась ошибка, которую он сам и нашел, к 1904 году разработав важнейшее понятие фундаментальной группы и построив на его базе контрпример
-48-
к собственной теореме. Тогда же он наконец поставил вопрос правильно.
Достаточно долго на гипотезу не обращали внимания. Интерес к ней пробудил Джон Генри Константин Уайтхед (1904–1960) — выдающийся английский математик, один из основателей теории гомотопий. Не следует путать его с дядей Альфредом Уайтхедом, тоже математиком, но специализировавшемся на логике и алгебре, написавшем вместе с Бертраном Расселом знаменитую монографию «Принципы математики», который в 30-е годы прошлого века объявил о том, что нашел-таки доказательство теоремы Пуанкаре. К сожалению, представленные расчеты в итоге оказались неверны, однако в процессе поиска и попыток исправить свои неточности он обнаружил интереснейшие классы трехмерных поверхностей и значительно продвинул теорию, которая позднее получила название топологии малых (или низших) размерностей. В 1950-1960-е годы всплеск интереса к проблеме вновь породил несколько ошибочных заявлений о том, что теорему удалось доказать, но после всесторонних проверок математики наконец поняли, что гипотеза Пуанкаре при своей внешней простоте, подобно знаменитой теореме Ферма, содержит множество подводных камней.
К тому времени топология низших размерностей стала отдельной ветвью математики и аналоги задачи Пуанкаре были доказаны для более высоких размерностей. Этому послужила удивительная причина: оказалось, что в невообразимом мире многих измерений эта часть геометрии устроена гораздо проще! Тем временем привычный нам «Трехмерный случай» продолжал оставаться камнем преткновения.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.