Константин Феоктистов - Траектория жизни. Между вчера и завтра Страница 13

Тут можно читать бесплатно Константин Феоктистов - Траектория жизни. Между вчера и завтра. Жанр: Документальные книги / Биографии и Мемуары, год 2000. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Константин Феоктистов - Траектория жизни. Между вчера и завтра читать онлайн бесплатно

Константин Феоктистов - Траектория жизни. Между вчера и завтра - читать книгу онлайн бесплатно, автор Константин Феоктистов

До этого в авиации, при создании новых самолетов, поступали по-другому. Новые самолеты всегда испытывал человек. Такая традиция сложилась еще на заре авиации, когда не было и намека на средства беспилотных испытаний самолетов. К тому же переход самолета от нахождения на аэродроме к полету можно было осуществить постепенно: сначала пробежки по взлетной полосе, потом пробежки с подъемом всего на несколько метров и так далее. Но совсем другое дело — ракета и космический корабль. Конечно, и здесь летным испытаниям должны предшествовать наземные испытания. Но плавно перейти от нахождения ракеты с космическим кораблем на стартовом столе к их полету невозможно: либо после включения двигателя ракета взорвется, либо не взорвется, либо полетит, куда надо, либо «за бугор». И пока не состоятся летные испытания, понять, удалось ли сделать надежную машину, нельзя. Кроме того, мы руководствовались тем, что для нас это была первая машина. Хотя к выпуску чертежей привлекались опытные конструкторы, но они тоже никогда не делали космические корабли и не могли заранее предусмотреть возможные ошибки. Поэтому мы считали недопустимым полет человека на корабле, пока не отработаем его в нескольких беспилотных запусках.

Американские разработчики космических кораблей набирались в основном из авиационных инженеров и не были столь скептически настроены к самим себе. Они пошли по традиционному пути авиационных испытаний — по пути риска жизнью первых пилотов. В космической технике риск при полете на новых машинах, конечно, больше, но и в авиации он не маленький. Как-то наш знаменитый летчик-испытатель Сергей Анохин рассказывал, что, когда он оставил работу испытателя, летчик, которому достался в наследство его шкафчик в раздевалке, счел это хорошей приметой, ведь его предшественник был еще жив: летчики-испытатели редко доживают до пенсии.

Для осуществления полета человека на орбиту необходимо было обеспечить высокую надежность ракеты-носителя (это дело ракетчиков), конструкции корабля, его оборудования, тепловой защиты. Самой трудной задачей представлялась проблема возвращения космонавта на Землю. Тогда (1958 год!) трудно было и вообразить, как защитить конструкцию спускающегося с орбиты аппарата от воздействия раскаленной плазмы (с температурой порядка десяти тысяч градусов), возникающей вокруг него при возвращении в атмосферу. Как отвести тепло, идущее от плазмы к конструкции аппарата, чтобы космонавт не изжарился при спуске. Вот в чем вопрос!

Наша межконтинентальная ракета уже летала, но ее головная часть до земли «не доживала». После каждого пуска в расчетный район падения на Камчатке приходилось посылать тысячи солдат, чтобы найти хоть какие-то осколки головных частей ракеты. Они разрушались в атмосфере и не долетали до земли.

Так что в реальность осуществления в ближайшие годы стоящей перед нами задачи многие тогда просто не верили. Но мы-то были уверены: решение найдем. Ход наших мыслей был достаточно примитивный, но в какой-то степени верный. Величина теплового потока, действующего на поверхность тела, тем меньше, чем больше радиус затупления лобовой части тела. Это было известно давно из экспериментов по исследованию теплопередачи от дозвукового потока горячего газа к обтекаемому телу. Значит, надо использовать для корабля наиболее тупое тело. А для тепловой защиты конструкции нужно было найти такой материал, чтобы он устоял в этих условиях и не горел. Наши материаловеды предложили использовать асботекстолит, армированный, как понятно из названия, негорючей асбестовой тканью. Он обладал тем свойством, что при нагреве, даже очень сильном, не горел, не плавился, а испарялся в набегающий поток плазмы, тем самым создавая дополнительное сопротивление передаче тепла от плазмы к конструкции.

Но одновременно нужно было решить и другую принципиальную задачу — найти приемлемую, достаточно простую и в то же время достаточно надежную схему спуска с орбиты и посадки. Вариантов могло быть много. Например, можно было использовать аппарат с крыльями. Рассматривался и вариант торможения и посадки с помощью винтов, подобных вертолетным.

Как выяснилось впоследствии, эта схема очень нравилась Королеву (а может быть, это была именно его идея?), и он через Тихонравова передал просьбу рассмотреть этот вариант. Но наши оценки показали, что эффективной работы винтов при спуске с орбиты и при посадке добиться трудно. Подготовили и отправили Королеву на подпись соответствующий отчет. Но С.П. отчет этот подписать отказался (мы обязаны были подписывать наши отчеты у него), хотя вроде бы и смирился с тем, что вертолетный вариант мы забраковали, и нам пришлось отправить отчет в архив без его подписи. Позднее я узнал, что Королев не смирился с этим выводом и года через два нашел группу инженеров, которые заинтересованно, всерьез начали разрабатывать вариант аппарата для спуска с орбиты с использованием винта. Потом к этому делу подключили еще и специалистов из Академии А. Ф. Можайского. Прошли годы, но эта разработка так ничем и не кончилась. В принципе такой аппарат, может быть, и можно сделать. Вот только трудности при этом возникают громадные, да и непонятно, зачем его создавать.

Рассматривались и другие схемы спуска и посадки, более простые и прагматичные. И наконец, в начале апреля 1958 года мы пришли к принципиальному выводу: спуск должен быть баллистическим (то есть без использования аэродинамической подъемной силы), с парашютной системой посадки. Анализ и расчеты показали, что такой способ может быть приемлемым и по массе, и по уровню сложности конструкции. Кроме того, перегрузки, возникающие при торможении в атмосфере, оказываются в пределах, допустимых для человека. Да и можно надеяться на сравнительно малые сроки разработки аппарата.

Следующим шагом был выбор формы корабля, вернее, формы его спускаемого аппарата. Конечно, естественнее спускать корабль целиком. Но в этом случае массы тепловой защиты и парашютной системы, которые зависят от размеров и массы возвращаемого в атмосферу аппарата, получались слишком большими. Нельзя было допустить, чтобы тепловая защита «съела» все запасы массы, необходимые для конструкции, различного оборудования, средств жизнедеятельности, для топлива. Отсюда делался однозначный в условиях дефицита массы вывод: спускаемую часть корабля нужно свести к минимуму. Так возникло понятие «спускаемый аппарат». Что же можно было оставить вне его? Мы резонно решили, что в другой части корабля, которую потом назвали приборно-агрегатным отсеком, нужно разместить то, без чего мог жить космонавт и без чего можно было обойтись во время спуска с орбиты, то есть тормозную двигательную установку с топливными баками, систему управления, телеметрию, командную радиолинию и тому подобное.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.