Геннадий Горелик - Матвей Петрович Бронштейн Страница 29
Геннадий Горелик - Матвей Петрович Бронштейн читать онлайн бесплатно
Бронштейн участвовал и в организации второй ядерной конференции. Фактически она состоялась в 1937 г., но намечалась на сентябрь 1935 г. В архиве Дирака сохранилось письмо Бронштейна от 21 апреля 1935 г. с приглашением приехать. В этом же письме Бронштейн сообщает, что второе издание книги Дирака (которую он переводил вместе с Иваненко) находится в печати и «будет опубликовано очень скоро — в течение двух или трех месяцев». Фактически книга вышла в 1937 г. Обстоятельства, с которыми была связана такая задержка, видны из письма Бронштейна Фоку от 11 апреля 1937 г.: «Сегодня я подписал к печати сигнальный экземпляр перевода Дирака. К сожалению, теперь настолько тяжелое время, что мне не удалось выиграть борьбу, которую я вел из-за этой книги с издательской сволочью. Во-первых, они добились того, что имя Димуса снято с титульного листа (для симметрии я снял и свое имя как переводчика и значусь только как редактор, на что я имею право, так как я поправил весь <...> димусов текст); во-вторых, они поместили непристойное предисловие в стиле троцкиста Шейна, где объясняется, что Дирак — мерзавец» [99][32].
Ядерной физике была посвящена последняя, по воле судьбы, статья Бронштейна. Она содержала расчеты влияния магнитного момента нейтрона на взаимодействие с веществом, в котором он движется. Эти расчеты, как отметил автор, были выполнены по просьбе И. В. Курчатова в связи с намеченными экспериментами в пединституте им. Покровского (где Курчатов заведовал кафедрой и развернул исследования). Статья Бронштейна несла, видимо, и педагогический заряд. Создается впечатление, что она имела цель научить экспериментаторов пользоваться общими методами квантовой механики для решения конкретных задач. По свидетельству сотрудников Курчатова, Матвей Петрович часто выступал в Пединституте с лекциями по современной физике.
В письме В. А. Фоку в апреле 1937 г. Бронштейн сообщал, что работает над подробной статьей для ЖЭТФа об аномальном рассеянии электронов ядрами (предварительная заметка — [32]); аномальность здесь связана с бета-взаимодействием. По-видимому, эту работу имели в виду Л. И. Мандельштам, С. И. Вавилов и И. Е. Тамм, когда в научной характеристике Бронштейна 1938 г. наряду с его результатами в теории полупроводников и в квантовании гравитации отметили: «В ряде работ по физике атомного ядра М. П. Бронштейн показал, в каких явлениях должен проявляться обменный характер ядерных сил».
Научная и просветительская деятельность М. П. Бронштейна внесла свой вклад в стремительное развитие ядерной физики в нашей стране, когда этого потребовали обстоятельства.
Глава 4. О трудных временах для законов сохранения и о трудной профессии физика-теоретика
Если читатель захочет по статьям Бронштейна не только узнать о развитии физики в 30-е годы, но и понять позицию автора, то особенно сильное недоумение вызовет, вероятно, популярная статья 1935 г. «Сохраняется ли энергия?». Удивит и сам этот вопрос — ведь сейчас закон сохранения энергии совершенно незыблем. Удивят и аргументы, сопровождаемые настоящей агитацией против всеобщей применимости закона сохранения энергии. Помимо физических соображений — экспериментальных и теоретических, автор стремится подорвать авторитет этого закона весьма нефизическими доводами, в частности уподобляя его тому, «прекраснее чего буржуа не может себе представить,— аккуратной бухгалтерской книге, в которой баланс подведен с точностью до последней копейки». А в вечном двигателе, использующем несохранение энергии в квантово-релятивистской области, предлагает видеть потенциальную основу для техники коммунистического будущего.
Читатель, успевший проникнуться симпатией к нашему герою, после его статьи о несохранении энергии испытает, наверно, чувство неловкости. С этим чувством можно справиться, только разобравшись в сути событий, которые сделали возможным появление указанной статьи. Внимательное рассмотрение этих событий поможет нам, кроме того, лучше понять научную обстановку 30-х годов и особенности физического мировоззрения М. П. Бронштейна.
О том, что закон сохранения был в 30-е годы уязвим, пишут нечасто и, главное, очень кратко. А одной фразой никак не объяснить, почему многие выдающиеся физики ставили тогда под сомнение всеобщность великого закона. Среди этих физиков были Ландау, Гамов, Пайерлс, Дирак; из старшего поколения — Эренфест. А автором гипотезы несохранения был один из величайших физиков XX в.— Нильс Бор.
В 20—30-е годы закон сохранения энергии испытал целых три потрясения. И ко всем трем попыткам пошатнуть великий закон имел отношение Бор, к первым двум — самое прямое.
В многочисленных работах, посвященных творчеству Бора, рассматриваются его глубокие идеи, ставшие фундаментальными для современной науки. И это, конечно, вполне понятное следствие огромной роли, которую сыграл Бор в физике XX в.
Однако хорошо известно, что не ошибается только тот, кто ничего не делает. В этой главе мы рассмотрим судьбу главной ошибочной идеи Бора — гипотезы о нарушении ЗС в субатомной физике. Поверхностному взгляду, брошенному в прошлое с высоты современных знаний, эта гипотеза может показаться не только ошибочной, но даже легковесной. Однако, чем навешивать ярлыки и ставить оценки, гораздо интереснее осмыслить обстоятельства, сделавшие возможным появление идеи, которая позже была сочтена явным заблуждением. Состояние науки и методология ученого иногда характеризуются заблуждениями не менее выразительно, чем достижениями. Гипотезу Бора никак нельзя назвать случайной, она привлекала его внимание долгое время — с 1922 по 1936 г. И важно понять причины долгой жизни столь нежизнеспособной, казалось бы, идеи.
4.1. Три попытки пошатнуть закон сохранения энергии
Впервые идею ограниченной применимости ЗС[33] в субатомной физике Бор опубликовал в статье 1923 г. [113] (законченной в ноябре 1922 г.). Почвой, на которой возникли сомнения в ЗС, были размышления о несовместимости волнового описания света и представлений о квантах света (введенных Эйнштейном в 1905 г. и позже названных фотонами). В то время главным инструментом Бора был принцип соответствия, и он не видел никакой возможности в духе этого принципа совместить волновую теорию и кванты света. Поэтому идею квантов света Бор считал неприемлемой. Но эйнштейновская «эвристическая точка зрения» на свет как на поток квантов, столь успешно объяснявшая фотоэффект, опиралась на ЗС. И вполне естественно, что антипатия к квантам света привела к сомнениям в абсолютности ЗС. Подобные сомнения, надо сказать, посещали и других [202, с. 133], но только смелость Бора и его авторитет позволили сделать эти сомнения достоянием сообщества физиков.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.