Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер Страница 3

Тут можно читать бесплатно Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер. Жанр: Документальные книги / Биографии и Мемуары, год 2014. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер читать онлайн бесплатно

Хоакин Наварро - Том 37. Женщины-математики. От Гипатии до Эмми Нётер - читать книгу онлайн бесплатно, автор Хоакин Наварро

Модель Солнечной системы Аристарха Самосского (он. 310 до н. э. — ок. 230 до н. э.) была гелиоцентрической, иными словами, Аристарх предполагал, что Солнце находилось в центре небесной сферы, а Земля вращалась вокруг него. Описать траектории небесных тел в этой модели было непросто — для этого использовались достаточно странные конструкции, включая эпициклы. Гипатия была сторонницей системы Аристарха, и весьма вероятно, что ее критика в адрес Птолемея (в «Альмагесте» он описал геоцентрическую систему мира) спустя много веков повлияла и на Николая Коперника.

* * *

КОНИЧЕСКИЕ СЕЧЕНИЯ

Это название в древности объединяло три всем известные кривые: эллипс, гиперболу и параболу — все они образуются сечением конуса вращения плоскостью. Если плоскость сечения параллельна образующей конуса, сечением будет парабола, в противном случае — гипербола или эллипс. Предельный случай эллипса — окружность, которая представляет собой эллипс без эксцентриситета и образуется при сечении конуса плоскостью, перпендикулярной оси конуса.

Хотя конические сечения первым описал Менехм (ок. 380 г. до н. э. — ок. 320 г. до н. э.), их автором считается Аполлоний Пергский, давший сечениям название и подробно рассмотревший их в своих восьми книгах, которые Гипатия снабдила частичными комментариями. Важность конических сечений заключается в том, что, как показал Кеплер и доказал Ньютон, они представляют собой траектории движения небесных тел.

* * *

Труды Гипатии, упоминаемые практически во всех источниках, представляют собой комментарии к более ранним текстам. Под комментариями здесь следует понимать неотделимые от исходного текста короткие заметки, подобные тем, что оставлял Ферма на полях прочитанных книг. В частности, Гипатия прокомментировала «Альмагест» Птолемея, «Конические сечения» Аполлония Пергского (ок. 262 г. до н. э. — ок. 190 г. до н. э.), «Арифметику» Диофанта Александрийского (между 200 и 214 — между 284 и 298) и «Астрономический канон», который предположительно представлял собой сборник таблиц движения небесных тел. Вместе с отцом Гипатия усовершенствовала астролябию и подготовила комментарии к «Альмагесту» Птолемея и «Началам» Евклида. Между прочим, арабский первоисточник, который был переведен на латынь в XII веке и на основе которого был подготовлен современный текст этого монументального труда, по удивительному стечению обстоятельств представляет собой текст Евклида с комментариями Теона и Гипатии.

Гипатия самостоятельно сконструировала ареометр — прибор для измерения плотности и веса жидкостей.

Заметим, что не известно ни одного труда, который бы однозначно принадлежал Гипатии. Ее комментарии либо утеряны, либо неотделимы от исходных текстов. Однако современники считали эту женщину величайшим математиком.

Диофантовы уравнения

Как мы уже говорили, Гипатия потратила много сил на составление комментариев к трактатам Диофанта. В своих 13 книгах (до нас дошли только шесть из них) Диофант рассматривает уравнения, весьма схожие с теми, которые сегодня по праву называются диофантовыми. Это алгебраические уравнения с целыми коэффициентами и целыми решениями; если говорить сухим языком современной математики, это уравнения, определенные на кольцах [x1, x2xn].

Разумеется, об этих уравнениях можно долго рассказывать, но, как говорится, один хороший пример лучше тысячи объяснений, поэтому обратимся к известной и довольно занимательной истории, впервые рассказанной писателем Беном Эймсом Уильямсом, автором бестселлеров «Бог ей судья» (Leave Her to Heaven) и «Все братья были храбрецами» (All the Brothers Were Valiant). Эта история об обезьяне, моряках и кокосах звучит так.

Потерпев кораблекрушение, на пустынный тропический остров выбрались пять изголодавшихся моряков. На острове, казалось, не было никакой пищи, кроме кокосов, и моряки собирали их, пока не стемнело. Ночь была столь темной, что моряки решили устраиваться на ночлег и поделить кокосы на следующий день. Они шутливо пожелали спокойной ночи обезьяне — по всей видимости, единственному человекообразному жителю острова — и улеглись на песке. Вскоре моряки дружно захрапели.

Однако ночью один из моряков проснулся от голода. Он подошел к горе кокосов, разделил ее на пять частей (допустим, что в каждой части было а кокосов) и съел свою долю. Один кокос оказался лишним, и моряк отдал его обезьяне. После этого моряк отправился спать. Вскоре проснулся второй моряк и поступил точно так же, как и первый. Он разделил оставшиеся кокосы, не заметив, что их стало меньше, и съел свою долю (допустим, кокосов). Один кокос вновь оказался лишним, и моряк отдал его обезьяне. Так поступили все моряки, и у каждого оставался лишним один кокос, который доставался обезьяне. Сколько кокосов было вначале?

Если мы обозначим это число через N, то задача сводится к системе диофантовых уравнений (а это уже совсем не очевидно), описывающих манипуляции с кокосами, которые, подобно матрешкам, делились на все более мелкие части:

N = 5a +1

N — а — 1 = 5Ь + 1

N — а — b — 2 = 5с + 1

N — a — b — c — 3 = 5d + 1

N — a — b — c — d — 4 = 5е +1.

Здесь а, Ь, с, d и е — число кокосов, съеденных каждым моряком. Последовательно выполнив замены переменных, получим уравнение

1024·N = 15 625·е + 11 529.

Оно имеет бесконечно много решений, которые можно найти несложными алгебраическими методами (мы не будем приводить подробное решение, чтобы читатель тоже мог продемонстрировать математические способности). Решение таково:

Чтобы найти решения, достаточно подставить вместо λ различные целые числа. Разумеется, наименьшее число кокосов, которые можно съесть, обязательно должно быть положительным. Приняв λ = 1, получим решение, которое будет наименьшим: N = 15621. Простые подсчеты показывают, что моряки съели 3124, 2499, 1999, 1599 и 1279 кокосов соответственно. Да уж, у них был отменный аппетит!

Елена Лукреция Корнаро Пископия (1646–1684)

В одной из опер Доницетти рассказывается о приключениях — точнее сказать, злоключениях — благородной венецианки Катерины Корнаро, которая правила Кипром и Арменией в 1500 году. Эта опера осталась бы практически незамеченной, если бы в 1972 году главную роль в ней не исполнила Монсеррат Кабалье, а ее партнером не был Хосе Каррерас. Фамилия Корнаро всегда славилась в Венеции — ее носили члены самых знатных семейств, которые становились кардиналами, папами и даже художниками.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.