Геннадий Горелик - Матвей Петрович Бронштейн Страница 43

Тут можно читать бесплатно Геннадий Горелик - Матвей Петрович Бронштейн. Жанр: Документальные книги / Биографии и Мемуары, год 1990. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Геннадий Горелик - Матвей Петрович Бронштейн читать онлайн бесплатно

Геннадий Горелик - Матвей Петрович Бронштейн - читать книгу онлайн бесплатно, автор Геннадий Горелик

имеющие физический смысл вопросы» [21, с.25]. Схема показывает, что ближайшая задача — построение релятивистской квантовой теории, с/-теории. Разъяснив, почему «вопрос о значениях мировых постоянных, имеющих размерность, лишен физического смысла», Бронштейн пишет: «если теория объяснит константы, лишенные размерности, то этим ее задача будет в принципе выполнена, так как лишь от значений этих констант зависит то, почему окружающий нас внешний мир выглядит так-то, а не иначе». Затем приводится пример одной из задач с/-теории — объяснить безразмерную константу /с/е2 (постоянную тонкой структуры), что объяснило бы и заряд электрона е посредством постоянных с и h. Тогда, впрочем, это было распространенным прогнозом.

Однако в литературе тех времен не найти ничего похожего на продолжение бронштейновского прогноза:

«После того как релятивистская теория квант будет построена, задача будет заключаться в том, чтобы построить следующую часть нашей схемы, т. е. слияние квантовой теории (с ее постоянной h), специальной теории относительности (с ее постоянной с) и теории тяготения (с ее G) в одно единое целое». (Убедиться в нетривиальности cGh-схемы Бронштейна можно, сопоставив ее со статьей Паули 1936 г. [250], где ситуация в физике также рассматривается с помощью констант с, G и h.)

В качестве примера Бронштейн приводит задачу для сGh-теории — объяснить безразмерное число hc/Gme2 = 6-1044 и тем самым объяснить массу электрона те через постоянные с, G и h.

Но главную задачу для cGh-теории Бронштейн видит в космологии: «решение космологической проблемы потребует предварительного построения той единой теории электромагнетизма, тяготения и квант, которая обозначена на нашей схеме 2 вторым пунктирным прямоугольником» [21, с. 28]. (Если здесь к электромагнетизму добавить фундаментальные взаимодействия, не известные в 1933 г., то получим высказывание вполне современное.)

Такую cGh-карту теоретической физики Бронштейн предложил в статье 1933 г. (те же самые идеи он излагал при обсуждении доклада Я. И. Френкеля «О кризисе современной физики» в ЛФТИ 26 февраля 1932 г. [291]).

Единственное изменение бронштейновской карты, которое потребовалось в дальнейшем, состояло в переходе от плоского изображения к трехмерному. Внимательно посмотрев на схему 2, можно заметить некоторую ее недостаточность. Например, на этой схеме не поместилась ньютоновская теория гравитации, а также путь от G-теории к cG-теории. Устранить эту асимметрию можно, расположив бронштейновскую схему в трехмерном «пространстве теорий» в cGh-системе координат (схема 3); это сделал А. Л. Зельманов [186]. В результате получается удобное представление фундаментальной теоретической физики (см., например, [168, гл. 8]).

Схема 3. «Пространство» физических теорий в cGh-системе координат

НТТ — ньютоновская теория тяготения,

СТО — специальная теория

относительности, КМ — квантовая механика, ОТО — общая теория относительности,

СРКТ — специально-релятивистская квантовая теория поля,

ОРКТ — общерелятивистская квантовая теория

Была у бронштейновской cGh-схемы и предыстория. Документальное ее свидетельство — заметка Гамова, Иваненко и Ландау 1928 г. «Мировые постоянные и предельный переход», опубликованная в ЖРФХО [156].

Заметка начинается с чисто методического, казалось бы, вопроса о построении системы единиц. Авторы отмечают, что можно двумя способами установить единицу измерения для какой-либо новой величины. Можно задать эталон для этой величины произвольно. Либо же, пользуясь каким-то законом, связывающим новую величину с уже известными и содержащим численный коэффициент, можно подобрать эталон так, чтобы этот коэффициент обратился в единицу. В первом случае получается новая мировая постоянная. Во втором — число основных (произвольных) эталонов и число мировых констант остаются неизменными: «мы получаем лишь естественную (по отношению к предыдущим) единицу для измерения нашей величины».

Можно воспользоваться вторым способом и для уменьшения числа основных единиц, положив одну из мировых констант равной единице. Авторы называют это редукцией. По их мнению, «введение новых постоянных и редукция к меньшему числу отобразились в истории физики как смена теорий и их постепенное объединение».

Для полной редукции (т. е. доведения числа эталонов до нуля) необходимо использовать столько независимых мировых констант, сколько основных единиц содержит данная система единиц. Поскольку физических констант много, а наиболее применяема в физике LMT-система размерностей, то возникает вопрос, какие три из всех констант следует выбрать. Авторы предлагают руководствоваться «двумя эвристическими положениями»: степенью общности теории, которую представляет данная константа, и пробой постоянной на предельный переход в цепочке «классическая теория — "вульгарная" [полуклассическая] теория — законченная теория».

В результате авторы за «истинные» постоянные принимают h, с-1, G и отмечают, что так, следуя Планку, можно перейти к физике без размерностей, получив «естественные» единицы для всех физических величин

Такое рассмотрение приводит авторов к единственному практическому выводу, касающемуся, правда, важной для того времени проблемы: «не имея еще теории электрона, можно, однако, на основании теории размерностей вывести некоторое заключение о характере этой теории»; так как [е] = ([h] [с])12, [m] = =([h][c][G]) , «обречены на неудачу часто производимые попытки построить теорию неквантового электрона в общей теории относительности»: если h=0, с^<ю, G^0, то е=0 и т=0. Мишень здесь, конечно, сам Эйнштейн и другие приверженцы единой теории поля, которые надеялись получить h-эффекты из cG-теории, более общей, чем ОТО.

Для тех, кто имеет представление об авторах этой заметки, она выглядит очень странно. Бросается в глаза явная «нерезультативность» этой публикации в научном журнале (ни одной производной, ни одного интеграла!). Если еще учесть утроенный авторский потенциал (это, кстати, единственная их совместная работа) и молодость авторов, то недоумение только возрастает. Трудно удержаться от предположения, что Ландау должен был назвать такую заметку «филологией» (самая мягкая из его отрицательных оценок). Ни у кого из троих в других работах не видно следов этой заметки.

Упоминание Планка привязывает этот текст сразу и к прошлому, и к будущему. В 1899 г. Планк ввел — с чисто метрологической целью — естественные единицы на основе констант с, G и только что появившейся h; а, как впервые обнаружилось в диссертации Бронштейна 1935 г., эти же самые план-ковские величины соответствуют квантовым границам ОТО (см. разд. 5.4).

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.