Журнал Q - Журнал Q 05 2010 Страница 10
Журнал Q - Журнал Q 05 2010 читать онлайн бесплатно
Не учтена и теплоёмкость оборудования, но и она также заведомо пренебрежима по сравнению с теплоёмкостью 400 литров воды. Следует заметить, что, с другой стороны, не учтена электрическая мощность циркуляционного насоса, которая также целиком переходила в нагрев воды. (Учёт этой мощности, не указанной в отчёте, должен был привести к снижению коэффициента преобразования.) Поэтому в целом полученный результат представляется верным в пределах точности порядка нескольких процентов. Этот результат (K ‹1) полностью соответствует обычным представлениям об эффективности перевода электрической энергии в тепло и не обнаруживает никаких аномалий».
На втором этапе испытаний к теплогенератору подключался рабочий контур теплоснабжения со значительным увеличением полного объема циркулирующей воды. При этом включался дополнительный циркуляционный насос и производились замеры расхода воды и перепада температуры на входе и выходе «активатора». Измерения производились в нестационарных условиях. Авторы протокола пришли в выводу, что на втором этапе установка продемонстрировала коэффициент преобразования К = 1.48. Анализ данных, относящихся к этому этапу, обнаружил недопустимо низкую точность измерений. Например, измерение расхода воды проводилось с точностью до 100 литров, а производительность циркуляционного насоса на протяжении 15 минут почему-то изменилась в 1.4 раза. Перечень претензий к процедуре проделанных измерений, заключение об их некорректности и предложение прокомментировать его и заполнить пробелы отчета были направлены авторам протокола ещё в конце января 2009 г. Ответа не последовало.
Поиск публикаций показал, что тема «вихревых генераторов» совсем не отражена в академических научных журналах, хотя частенько всплывала в СМИ и даже в периферийных отраслевых технических журналах. В.К. Урпин прислал мне статью одного из директоров группы «Тепло XXI века» С.В. Козлова под названием «Может ли КПД "вихревого теплогенератора" быть больше единицы?», опубликованную "в порядке обсуждения" журналом "Энергетика в Сибири"» [2]. Статья имеет элегантный эпиграф -«Мы все учились понемногу, чему-нибудь и как-нибудь…», который хорошо согласуется с её довольно необычным содержанием. Первая треть статьи посвящена «ликбезу» в области термодинамики и освежает знания читателя о цикле Карно, о КПД тепловой машины и, главным образом, о принципе действия тепловых на-
сосов — обращённых тепловых машин (или, попросту говоря, холодильников), позволяющих переносить тепло от холодного тела к более горячему за счёт потраченной работы. Эффективность теплового насоса характеризуется коэффициентом КТЭ, который равен отношению количества перенесенного тепла к затраченной работе. КТЭ идеального теплового насоса всегда больше 1 (как величина, обратная КПД) и может неограниченно нарастать по мере снижения разности температур между охлаждаемым и обогреваемым объёмом.
Всё это давно и хорошо известно, но не имеет никакого отношения к теме статьи, поскольку «вихревые генераторы» не имеют ничего общего с тепловыми насосами, кроме лукавого второго названия «тепловые гидродинамические насосы» (ТГН). Несомненно, это понимает и автор, поскольку после дидактических демонстраций схемы реального теплового насоса он переходит к описанию вихревого генератора, никак не пытаясь связать эти два устройства. Замечу, что название ТГН автор использует в качестве обобщающего, потому что механически нагревать воду можно разными способами (цитирую) — «Воздействовать на жидкий теплоноситель можно с помощью разных устройств: насоса типа "улитка" и "вихревой трубы", дисков, турбин и т.д.».
Далее в статье приводятся весьма сомнительные рекомендации по испытанию ТГН с путаными деталями, которые я раскритиковал в письме к Урпину. С.В. Козлов сурово выговорил мне за это: «В статье четко говорится, что приведенная методика применяется только для определения работоспособности теплового гидродинамического насоса, а не для определения КПЭ. Общепринятой методики определения КПЭ до настоящего времени нет, но мы заинтересованы в её создании. Это и сказано в статье». Яснее не скажешь. Тем самым, разработчики ТГН вообще не несут ответственности за заявленные ими заведомо невозможные цифры энергетической эффективности.
Завершает эту примечательную статью внезапная патетическая филиппика против «современных инквизиторов, пригревшихся в комиссиях по лженауке».
К статье подвёрстаны одобрительные отзывы. Один из них, подписанный ныне покойным адептом так называемых «торсионных технологий» Е.А. Акимовым, содержит весьма характерное признание: «К сожалению, в подавляющем большинстве случаев экспериментальные установки с КПД› 100% независимую экспертизу не проходили, хотя по документам изоб-
ретателей они имеют КПД 200%, а то и больше. При строгой метрологии часто оказывается, что такие установки имеют в действительности КПД ‹100%».
Это похоже на призыв к «комиссиям по лженауке» жить мирно: дескать, с энергией всякое бывает — иной раз сохраняется, а иной раз и нет!
Говоря о профессиональных публикациях на эту тему, следует упомянуть статью [3], авторы которой, видимо, стоят у истоков техники гидродинамического нагревания жидкостей. В статье весьма скрупулёзно рассмотрен теоретический аспект вопроса об энергетической эффективности таких устройств и прогнозируется КПД около 80%. В публикациях С.В. Геллера детально описана существенно отличная конструкция вихревого генератора под названием «аппарат БРАВО» — «гидродинамический аппарат для отопления, горячего водоснабжения, а также безопасного нагрева технологических жидкостей». Статья [4] Геллера посвящена измерениям тепловой эффективности этих аппаратов. Автор ставит под сомнение «заявления продавцов вихревых теплогенераторов о коэффициентах преобразования, превышающих 100%», и детально описывает свою методику измерения эффективности таких устройств. В статье приводятся примеры измерений эффективности аппарата «БРАВО», результаты которых обнаруживают разброс КПД в пределах 75.6-87.2%, что, по утверждению автора, коррелирует с коэффициентом полезного действия двигателя, вращающего «активатор». Автор отмечает, что КПД преобразования электрической энергии в тепловую может быть в пределе доведен до 100% при использовании электроагрегата, погруженного в термоизолированный бойлер. На сайте www.bravotech.ru в отношении этих аппаратов отмечено, в частности, что «тепло в аппарате может генерироваться с использованием энергии гидравлических и пневматических магистралей (сетей), без использования электродвигателя для привода насоса».
Едва ли следует связывать прозаическое значение КПД ‹1 с частной неудачей конструкции аппарата «БРАВО». Имеются и другие примеры корректно выполненных измерений энергетической эффективности вихревых генераторов иных конструкций, приводивших к такому же результату. Например, сайт РосТеп-ло.га поместил детальный отчёт [5] измерений эффективности вихревого теплогенератора ТПМ-5,5-1, изготовленного по лицензии кишинёвской фирмы «Юсмар» того самого «молдавского академика» Ю.С. Потапова, который рекламировал волшебные
«квантовые теплоэлектростанции». Отчёт составлен группой сотрудников НАН Украины, сделавших вывод, что «Коэффициент преобразования энергии испытанного теплогенератора не превышает единицы для всех исследованных режимов».
Закончу этот вынужденно краткий обзор публикаций, по-свящённых вихревым генераторам, концептуальной статьёй [6], отличающейся к тому же обширной библиографией — 67 ссылок. Автор выносит в заголовок вопрос: «Могут ли гидродинамические теплогенераторы работать сверхэффективно?», подразумевая под этим возможность производства большего количества тепла, чем затрачено механической работы. Анализируя всевозможные схемы подобных генераторов, автор приходит к отрицательному ответу на поставленный вопрос и одновременно предлагает убедительное объяснение иллюзии производства избыточного тепла, возникающей как следствие некорректного измерения. В основе объяснения лежит идея об уменьшении теплоёмкости воды, насыщенной микроскопическими кавитационными пузырями. Это приводит к аномальному (обратимому) разогреву вспененной воды на выходе активатора и к завышению оценки тепловой энергии. Похоже, однако, что чаще ошибки замера произведенного тепла связаны с тривиальной неоднородностью температуры в буферном объёме или даже в сечении потока воды.
Что касается нашей интенсивной переписки с В.К. Урпиным, то она внезапно прервалась в конце февраля 2009 после того, как я послал ему (по его запросу) свой план проведения контрольных измерений. Не получив никакого ответа, я через полгода снова побеспокоил своего респондента, и он ответил, что мой план его не устраивает. Дело, по его мнению, обстоит не так просто, как я себе представляю, да и вообще компания «Тепло XXI века» в связи с экономическим кризисом закрывает свою опытную станцию и не может сейчас отвлекаться на исследования.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.