Про эту вашу физику - Дмитрий Владимирович Ганин Страница 9

Тут можно читать бесплатно Про эту вашу физику - Дмитрий Владимирович Ганин. Жанр: Документальные книги / Публицистика. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Про эту вашу физику - Дмитрий Владимирович Ганин читать онлайн бесплатно

Про эту вашу физику - Дмитрий Владимирович Ганин - читать книгу онлайн бесплатно, автор Дмитрий Владимирович Ганин

возможны только значения кратные постоянной Планка. Приехали!

Формула Планка для излучения абсолютно черного тела выдала адекватный результат без всяких бесконечностей. Потому что кусочки энергии, в отличие от бесконечно малых величин, можно подсчитать. После этого научный мир замер в нехорошем предчувствии.

Окончательно добил классическую физику Эйнштейн. Его первым открытием была совсем не теория относительности. А объяснение фотоэффекта. За что он получил нобелевскую премию (а совсем не за теорию относительности, которую даже светлые умы принимали за научную фантастику).

Фотоэффект — это когда свет падает на пластинку и выбивает из нее электроны. Только вот энергия (скорость вылета) выбитых электронов не зависит от увеличения мощности (яркости) света: зажигай хоть сто ламп, но увеличится только число электронов, а не их скорость. Энергия же выбитых из пластинки электронов растет, если повысить частоту волны света, уменьшая ее длину: то есть посветить не красным, а, например, фиолетовым светом. Свет с малой частотой, типа очень красного, вообще не производит эффекта. Это, кстати, напрямую касается великой тайны, почему фотографии проявляют при красном свете — только этот цвет не засвечивает пленку, улавливаете?

Явление фотоэффекта вообще никто не мог объяснить в рамках классической физики (русский физик Столетов, между прочим, плотно занимался вопросом и сделал большой вклад в описании феномена).

Пролить свет на свет (хе-хе) удалось Эйнштейну. Чтобы объяснить, почему цвет падающего луча света, а не его яркость, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь озадаченный Планк применял свою теорию только к тепловым излучениям.

Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов фотонов.

При фотоэффекте в силу размеров участников сражение между электроном и фотоном идет один на один. Чтобы фотон при столкновении с электроном вырвал последний из металлической пластинки, он должен иметь для этого достаточное количество энергии. А если применить формулу Планка именно для света, то выходило, что энергия каждого фотона пропорциональна частоте световой волны, то есть отдельно взятый фотон обладает определенной энергией, зависящей от собственной частоты. Вот и получалось, что частота света (это всего лишь его цвет) определяет скорость вылетающих электронов, а интенсивность (яркость) света влияет только на количество выбитых электронов. Это как сотни детишек будут сбивать снежками сосульки, но никто не сможет докинуть до крыши, а потом придет переросток из старшей группы, одной левой метнет снежок и собьет цель.

Таким образом, Эйнштейн показал, что электромагнитная волна (свет) состоит из маленьких частиц — фотонов, которые в свою очередь представляют собой маленькие порции или кванты света.

И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании — не поверят и вызовут санитаров.

Не поверите, но Эйнштейн был злостным противником квантовой физики. Он открыл дверь в этот мир, однако до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там борны, боры, гейзенберги, лифшицы-ландау и прочие открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна, квантовые штучки были подтверждены экспериментально и окончательно.

В дальнейших наших ликбезах мы обязательно заглянем в парадоксы квантовой физики, и, надеемся, нам хватит слов и умений объяснить их человеческим гуманитарным языком.

Глава 6

Материя. Частицы

Дело не в размере.

Атомное ядро еще мельче,

а страсти вокруг него еще больше.

(Академик П. Капица)

Мы продолжаем экстремальный ликбез для любознательных гуманитариев. Если заглянуть на непрофильные форумы в интернете, то очевидно, что российская наука готовится к серьезному прорыву в физике, так как чуть ли не каждый пользователь интернета этой страны способен рассуждать на тему квантовой гравитации и убедительно доказывать свою правоту. Поэтому мы просто обязаны восполнять у населения пробелы в научной картине мира.

Сегодня мы решили напомнить научному сообществу Всемирной Паутины о том, что современная наука знает о материи.

Начнем с того, что все знают или догадываются. Окружающий нас мир состоит из атомов. Это понятные повседневному опыту материальные объекты, иногда видимые даже в микроскоп (правда, электронный). Одно время считалось, что атомы — мельчайшие неделимые частицы. Причем, идею выдвинули аж древние греки, которые слишком много думали о возвышенном, но потом римляне, а следом и христиане, переключились на другие проблемы, и вопрос о составе материи стал не актуален: крестовые походы сами себя не организуют. И только в 1789 году один юрист по имени Антуан Лавуазье вернулся к крамольным мыслишкам об атомах, открыв дверь богомерзкой науке о веществе.

Мы знавали альтернативно образованных людей, которые уверяли, что атомов никто не видел, потому что они из тонких тел. Не верьте таким людям — сейчас все можно увидеть в Инстаграме. В интернетах легко находится, например, фотография атомов кремния, сделанная с помощью сверхвысоковакуумного сканирующего туннельного микроскопа.

В общем, мир был бы прост и замечателен, если бы атом был мельчайшей деталькой всего сущего. Ученые готовились объявить о завершении научных исследований и формулировке окончательной фундаментальной теории. Но всегда находится человек, который все портит: в 1897 году Томсон баловался с током и нечаянно открыл электрон. Стараясь сохранять спокойствие, он решил, что атом — это смесь отрицательно и положительно заряженных частиц (как булка с изюмом — любимый пример из учебников физики). Если подумать, это многое объясняло.

Но предположение Томсона долго не прожило, потому что в 1909 году Эрнесту Резерфорду вздумалось пострелять альфа-частицами по тяжелым атомам (а точнее по кусочку тоненькой золотой фольги) — видите, на что они тратят гранты?

Внезапно некоторые альфа-частицы не проходили сквозь фольгу, а иногда отскакивали от нее. Резерфорд обнаружил, что в центре атома есть что-то такое крупное и прочное, что отбивает альфа-частицы.

Да, для справки: альфа-частицы представляют собой два нейтрона и два протона (они же ядра атома гелия). Альфа-частицы возникают при радиоактивном распаде и являются наиболее безопасным видом радиоактивного излучения.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.