Александр Проценко - Энергия будущего Страница 34

Тут можно читать бесплатно Александр Проценко - Энергия будущего. Жанр: Домоводство, Дом и семья / Прочее домоводство, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Александр Проценко - Энергия будущего читать онлайн бесплатно

Александр Проценко - Энергия будущего - читать книгу онлайн бесплатно, автор Александр Проценко

всего 0,1 грамма термоядерного топлива дает энергию, эквивалентную 500 литрам бензина).

Важным свойством установки управляемого термоядерного синтеза является ее безопасность. Это очень большое достоинство. И еще: поскольку в реакторе всегда будет находиться небольшое количество топлива, невозможна самопроизвольно разгоняющаяся ядерная реакция. По сравнению с реакторами деления термоядерные производят меньше радиоактивных отходов.

Другое интересное свойство, имеющее большое значение, - это возможность, по крайней мере в принципе, реализовать в установке прямое генерирование электроэнергии. Слово "в принципе" употреблено не случайно, поскольку пока неясно, как технически воплотить его в жизнь. Но основная идея процесса может выглядеть так: если в качестве горючего использовать только дейтерий, а не дейтерий и тритий, то при существенном увеличении температуры реакции только около одной трети освобождаемой энергии будут уносить нейтроны, а остальные две трети останутся в заряженных продуктах реакции. Кинетическая энергия этих заряженных частиц может быть преобразована непосредственно в электрическую. Например, если слегка увеличить напряженность магнитного поля, то увеличится плотность плазмы, это приведет к увеличению выработки в ней энергии, следовательно, возрастут температура и давление плазмы, вызывая ее расширение, преодолевающее магнитное поле. Изменение же магнитного поля, которое происходит при этом, в свою очередь, может вызвать появление наведенного напряжения в электрических цепях. Таким может быть процесс прямого получения электрической энергии. Однако не надо забывать, что это только идея, правда, очень привлекательная в принципе, но на деле может оказаться очень трудной и невыгодной.

Задача овладения управляемым термоядерным синтезом настолько заманчива, что породила очень много различных вариантов соответствующих установок.

Мы познакомились только с двумя из них.

Одно из увлекательных занятий в области термоядерных реакций придумывание новых подходов к проблеме. Но специалисты подтвердят, что и это нелегкая- задача. Из числа предложений, выдвинутых за многие годы, одни были красивыми и остроумными, другие хотя и многообещающими, но трудными и неспособными удовлетворить основным требованиям, предъявляемым к термоядерному реактору. В своей книге по управляемому термоядерному синтезу американский ученый А. Бишоп ввел специальное приложение № 4, которое озаглавил "Бесперспективные методы".

Среди идей, заслуживающих внимания и получивших дальнейшее развитие, в первую очередь стоит упомянуть предложение физиков Е. Завойского и Л. Рудакова об использовании для возбуждения термоядерных реакций мощных пучков релятивистских (сверхскоростных) электронов (Институт атомной энергии).

Основные идеи, касающиеся мишени и ее взаимодействия с электронным пучком, не отличаются от применения лазеров. Правда, здесь проще решается проблема затраты энергии. Ведь получить электронный пучок значительно проще и экономнее, нежели лазерный импульс такой же мощности. Имеющиеся здесь трудности связаны в основном с необходимостью создания системы очень точной фокусировки.пучка: расталкивание одноименно заряженных электронов этому очень мешает...

Что же дают обширные программы проводящихся и уже завершенных исследований? Как и в случае с программой космических исследований (она также имела своих критиков), она позволила повысить уровень ряда разделов науки не только собственно о плазме, но и в смежных с нею областях.

К примеру, очень важной проблемой для науки и человечества является понимание процессов, происходящих на Солнце, и прогнозирование поведения солнечной активности. Решение этой проблемы важно не только как еще один шаг в понимании деталей картины мира, ведь изменение активности Солнца сказывается на растительности, животном мире, погоде, жизнедеятельности человека.

Какое сверхтопливо обеспечивает долгое горение Солнца, каковы закономерности его горения? Две с половиной тысячи лет назад появилось первое физическое объяснение: древнегреческий философ Анаксагор утверждал, что Солнце - это не бог Аполлон, а просто большой раскаленный камень. Потом появились другие гипотезы: падение метеоритов на поверхность Солнца, сжимание его гравитационными силами...

Однако только после того, как было достигнуто достаточное знание о ядерных реакциях и их энергетическом балансе, пришло время главной гипотезы сегодняшнего времени: источник энергии на Солнце - термоядерные реакции.

Проведенные в последние десятилетия исследования по условиям протекания термоядерных реакций помогли несколько прояснить этот вопрос. Изучение состава Солнца показало, что солнечное вещество - это практически только водород и гелий. Отсюда как будто бы автоматически напрашивался вывод: водород превращается в гелий. Однако четыре ядра водорода не могут сразу слиться в одно ядро гелия.

Значит, возможно, это осуществляется не непосредственно, а через промежуточные реакции. Сейчас наиболее вероятными считаются два таких цикла: углеродно-азотно-кислородный и водородный, развивающийся через литиевую, борную, бериллиевую ветви.

Какие реакции и в какой пропорции действительно осуществляются в недрах Солнца, сказать трудно.

Не хватает многих данных об условиях и скорости их протекания Но часть этих данных как раз и появляется при изучении плазмы в процессе осуществления управляемого термоядерного синтеза.

К сожалению, очень многое в тайнах термоядерного синтеза на Солнце понять еще не удается, хотя для объяснения тех или иных несоответствий предложено достаточно много гипотез. Вот, например, одно из таких несоответствий. Сейчас роль главного источника энергии отводится водородному циклу. Он начинается в реакции слияния двух ядер водорода и образования ядра дейтерия с выделением при реакции позитрона и нейтрино.

Нейтрино! Всепроникающие частицы, потоки которых мы должны обнаружить на Земле! Вот мы и столкнулись с первым противоречием. Дело в том, что пока в проведенных экспериментах солнечные нейтрино не обнаружены. Есть ряд объяснений, которые, в свою очередь, требуют дополнительных исследований. И эги исследования ведутся наряду с продолжающимися работали по управляемому термоядерному синтезу.

Мы привели лишь один пример влияния программы УТС на исследования в других отраслях знаний. Осуществление программы оказало влияние и на другие области человеческой деятельности.

Термоядерный реактор еще не работает, но проведенные для него исследования и разработки позволили создать ионные двигатели на космических кораблях, используемые для систем ориентации. Внедряется технология магнитно-импульсной сварки. Изучение плазмы двинуло вперед проблему создания магнитогидродинамических генераторов электроэнергии. Мощные импульсные МГД-генераторы уже используются геологами для разведки природных ископаемых.

Проблема УТС еще не решена, однако наука и промышленность уже начинают ощущать отдачу от приложенных к ней усилий.

ГРОЗИТ ЛИ ЧЕЛОВЕЧЕСТВУ ЭНЕРГЕТИЧЕСКИЙ ГОЛОД?

Хорошо поставить вопрос - значит уже наполовину решить его.

Д.Менделеев

В начале 70-х годов страницы газет запестрели заголовками: "Энергетический кризис!", "Надолго ли хватит органического топлива?", "Конец нефтяного века!", "Энергетический хаос". Этой теме до сих пор большое внимание уделяют все средства массовой информации - печать, радио, телевидение. Есть ли какие-либо основания для такой тревоги? Да, они есть, ибо человечество вступает в сложный и достаточно долгий период коренного преобразования и мощного развития своей энергетической базы.

Сложность и трудность этого периода осознана большинством ученых, энергетиков, правительств. Что же делать? Надо решительно расширять масштабы современной энергетики, отыскивать новые источники энергии я развивать новые способы ее преобразования.

Сколько энергии нужно человеку?

Пожалуй, с самого начала нужно признаться, что ответить на этот очень трудный и очень актуальный и нужный вопрос однозначно невозможно. Очень нужный он потому, что от ответа на него зависит планирование и развитие энергетики, а следовательно, всей промышленности и народного хозяйства. От ответа на вопрос об актуальности развития атомной энергетики сейчас или чуть позже зависят порою принимаемые специалистами технические решения. Как мы убедились, необходимые характеристики и конструкция атомных реакторов-размножителей самым прямым образом связаны с темпами развития всей энергетики.

Вопрос этот и очень трудный. В книге академика Л. Мелентьева "Оптимизация развития и управления больших систем энергетики" есть такие строки: "Для общеэнергетической системы СССР последней четверти XX века главными неопределенными факторами, которые влияют на ее развитие и проявляются через неполноту исходной информации, являются: данные о необходимых потребностях в энергии..." Вы, конечно, заметили, что "главным неопределенным фактором" является вопрос - сколько же энергии нужно человеку? Попробуем хотя бы охарактеризовать пути подхода к этому вопросу и привести примерные величины потребности людей в энергии в ближайший период времени.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.