Николай Жаворонков - Создано человеком Страница 37

Тут можно читать бесплатно Николай Жаворонков - Создано человеком. Жанр: Домоводство, Дом и семья / Прочее домоводство, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Николай Жаворонков - Создано человеком читать онлайн бесплатно

Николай Жаворонков - Создано человеком - читать книгу онлайн бесплатно, автор Николай Жаворонков

Но в том и в другом случае именно химический реактор является тем элементом технологической схемы, от совершенства которого зависит возможность осуществления в промышленных условиях производства нужных соединений. Оно и попятно, ведь современные хпмико-технологические процессы осуществляются с большими скоростями, с применением средств самонастройки на оптимальный режим и должны отвечать, кроме всего прочего, условиям комплексного использования сырья и энергии и исключить возможность загрязнения воздушного и водного бассейнов вредными выбросами.

В наши дни химизация является одним из важнейших факторов, способствующих интенсификации развития всей экономики в целом. Поэтому химические отрасли промышленности в широком смысле слова развиваются и будут развиваться в двенадцатой пятилетке опережающими -темпами. А поскольку уже сейчас очевидно, что экстенсивные методы роста промышленности себя исчерпали, то требуются такие серьезные шаги, направленные на такие радикально качественные изменения технологических процессов, которые позволили бы самым оптимальным способом использовать сырье, топливо, энергию. Это разработка катализаторов нового поколения, внедрение в промышленную практику таких перспективных процессов, как мембранные, экстракция сжатыми газами при сверхкритических давлениях и, конечно же, новейшего оборудования.

Другими словами, перспективы развития химической технологии определяются необходимостью создания экономичных, интенсивных технологических процессов, высокопроизводительной аппаратуры, систем автоматического контроля, управления и оптимизации не только отдельных процессов, но и целых производств с широким использованием электронно-вычислительной техники.

Для решения этого сложнейшего комплекса проблем требуются и соответствующие кадры, так что перестройка высшей школы, которая сейчас осуществляется в нашем государстве, не что иное как приведение в должное соответствие уровней развития науки, производства и образования. Причем последнему в этой триаде, которая определяет успех научно-технического прогресса, безусловно, принадлежит ведущая роль. Более того, высшее образование, осуществляющее подготовку столь необходимых для развивающихся отраслей промышленности специалистов, само стало производительной отраслью народного хозяйства, той животворной силой, что способна постоянно и планомерно пополнять самое главное богатство страны высококвалифицированных создателей материальных ценностей. Время подтвердило верность мнения академика Владимира Ивановича Вернадского, считавшего "высшую школу в борьбе за существование более мощным орудием, чем дредноуты".

Применительно к инженерно-химическому образованию такая характеристика удивительно справедлива.

И это не только мое мнение. Подобную точку ярения разделяет, например, Дэвид Росс, книга которого "Энергия волн" издана у нас в стране несколько лет назад.

В ней английский ученый, рассказывая о научном руководителе министерства энергетики Великобритании Гордоне Гудвине, обосновывает предпочтительное отношение к образованию инженера-химика, которое "исповедует" сам и которое вместе с ним разделяет и Гудвин.

Вот, что пишет дословно Дэвид Росс на страницах своей книги: "Он (Гордон Гудвин) - инженер-химик и утверждает, что такое образование является идеальной основой, ибо охватывает любую инженерную область и позволяет разговаривать с .механиками, конструкторами и электриками на их языке".

И это действительно так, потому что химия - та единственная фундаментальная наука, которая, обеспечивая глубокое понимание процессов и явлений, происходящих в природе, сближает, а не разделяет специалистов других областей знаний. Именно поэтому "язык химии" - это язык всех естественных областей знаний.

То самое "эсперанто", на котором изъясняются квалифицированные инженерные кадры нашего времени.

Нисколько не сомневаюсь, что он же сохранит свою значимость и в веке грядущем. Удивительно ли, что еще в 1985 году наше отделение физикохимни и технологии неорганических материалов активно участвовало в обсу.клешш проблем совершенствования подготовки инженеров-химиков на Международном симпозиуме по высшему инженерному образованию социалистических стран в Ленинграде.

В том же году эти проблемы стали предметом горячих споров на межвузовской конференции по химической технологии в Куйбышеве, а в мае 1986 года на Международном симпозиуме по тепломассообмену в Минске ученые вновь вернулись к той же проблеме.

Так каким же он должен быть, современный инженер-химик? Прежде всего, человеком творческим. Умеющим разглядеть задачу и решить ее. И здесь, к сожалению, мне видится сразу несколько тревожных тенденций в подготовке наших кадров. В первую очередь беспокоит тот факт, что число специальностей, по которым осуществляется в стране подготовка инженеров, на порядок больше, чем, например, в США.

Разумеется, специализация - вещь хорошая. И реформа высшей школы предполагает подготовку специалистов для некоторых перспективных, но узко профильных направлений науки и техники. Однако общее количество специальностей должно быть ограниченно, да и готовиться специалисты должны вузами страны в строгом соответствии с заявками, получаемыми от предприятий. Когда же абсолютное большинство выпускников наших вузов (речь идет в данном случае о специалистаххимиках) получает только узкую специализацию, не тревожный ли то "факт? И не уместно ли по данному поводу вспомнить афоризм древних греков, перефразированный в свое время мудрым насмешником Бернардом Шоу:

"Узкий специалист узнает все больше о все меньшем и так до тех пор, пока не будет знать все ни о чем и ничего обо всем".

Для того чтобы такой весьма тревожный парадокс не реализовался в практике нашего образования, необходимо, чтобы высшая и в первую очередь техническая школа страны проводила широкую общенаучную, специальную и экономическую подготовку кадров по основным специальностям, строго отбирая еще в процессе обучения в институтах и университетах людей, проявляющих явную склонность к научной и инженерно-конструкторской деятельности.

Тех, кто следит за развитием отечественной науки и сам принимает в ее становлении деятельное участие, беспокоит наметившееся в последнее время некоторое снижение способности отечественных научных коллективов к генерации и реализации новых идей, концепций, открытий. Это тревожное явление, зарождаясь еще в вузовских коллективах, наиболее активно может проявиться затем и в отраслевой и даже (что особенно опасно!)

в фундаментальной науке.

Объяснить наметившийся спад творческой активности отечественных специалистов и ученых на наш взгляд совсем несложно - отсутствие и в высшей школе, и в исследовательских институтах необходимой аппаратуры, новейшего оборудования. В Англии и США, например, революция в инструментальных методах химии, в том числе и инженерной, закончилась еще к началу 1984 года. Экспериментальные установки университетов и колледжей как правило автоматизированы. В основе такого резкого "отрыва" лежит разработка и промышленное освоение многочисленных и разнообразных микродатчиков (сенсоров) и, конечно, доступность индивидуальных средств вычислительной техники.

Конечно, роль человеческого фактора и на производстве, и в науке сейчас чрезвычайно высока. Но чтобы его возможности полностью раскрылись, необходима техническая реализация идей, открытий, изобретений.

С этим иногда дело обстоит неважно... Чтобы не быть голословным, приведу пример, подтверждающий этот вывод.

Как известно, создание сверхбольших и сверхскоростных интегральных схем предъявило отечественной химической науке свой конкретный заказ. Одно из главных его требований - разработка структурно совершенных монокристаллов и эпитаксиальных (эпитаксия - ориентированный рост одного кристалла на поверхности другого) структур арсенида (арсениды - химические соединения мышьяка с металлами) галлия и твердых растворов на его основе. Задача эта, прямо скажем, не из легких. И чтобы быстрее и успешнее ее решить, при Институте общей и неорганической химии АН СССР разработаны предложения по созданию Межведомственного научно-технического комплекса "Технология новых материалов для микро- и функциональной электроники)).

И хотя идей, методов, подходов к решению поставленных жизнью проблем нам занимать не приходится, практическое решение тормозится главным образом отсутствием необходимого оборудования. Разумеется, ученые прекрасно знают, что именно им нужно для решения проблемы, но знать и иметь, как известно, совсем не одно и то же.

И такое положение, к сожалению, складывается при рассмотрении многих других проблем, научных и практических.

Как известно, в современном промышленном оборудовании (теплообменники, абсорберы для защиты окружающей среды от вредных газовых выбросов, газо-жидкостные реакторы) жидкость движется в виде тонких пленок толщиной от нескольких десятых миллиметра до 2-3 миллиметров. Чтобы создать методы расчета кинетики массообмена в таком оборудовании, необходимо провести тончайшие измерения: определить профили скорости по сечению пленки, профили интенсивности турбулентности, стохастические (случайные) процессы волнообразования на поверхности.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.