В Лаврус - Источники энергии Страница 4

Тут можно читать бесплатно В Лаврус - Источники энергии. Жанр: Домоводство, Дом и семья / Прочее домоводство, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

В Лаврус - Источники энергии читать онлайн бесплатно

В Лаврус - Источники энергии - читать книгу онлайн бесплатно, автор В Лаврус

Октановое число 105?

Исследования опровергли устоявшееся мнение, что использование газа вместо бензина -- вынужденная мера. Газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в несколько раз меньше.

Автомобиль на бензине выбрасывает в атмосферу сернистый газ, который образуется от сгорания сернистых компонентов топлива, и тетраэтилсвинец. В природном газе серы, как правило, нет, а поэтому в выхлопах газового двигателя нет ни сернистого газа, ни соединений свинца.

В отработанных газах бензинового двигателя из-за неполного сгорания топлива содержится и окись углерода (СО) -- токсичное для человека вещество.

И газовые, и бензиновые автомобили выбрасывают в атмосферу одинаковое количество углеводородов. Для здоровья человека опасны не сами углеводороды, а продукты их окисления. Двигатель, работающий на бензине, выбрасывает сравнительно легко окисляющиеся вещества -- этил и этилен, а газовый двигатель -- метан, который из всех предельных углеводородов наиболее устойчив к окислению. Поэтому углеводородный выброс газового автомобиля менее опасен (см. рис. p064).

Газ как моторное топливо не только не уступает бензину, но и превосходит его по своим свойствам.

Двигатель внутреннего сгорания автомобиля работает по классическому четырехтактному циклу. Газообразная смесь воздуха и топлива всасывается в цилиндр двигателя, сжимается поршнем, воспламеняется искрой, давит на поршень и двигает шатунный механизм, а затем выбрасывается из цилиндра.

Чем сильнее можно сжать топливо без возникновения детонации (детонация [лат. detonare прогреметь] -распространение пламени в веществе со скоростью, превышающей скорость звука в данном веществе), тем больше мощность двигателя. Антидетонационную способность топлива определяют октановым числом. Чем оно выше, тем лучше топливо. Среднее октановое число природного газа -- 105 -- недостижимо для любых марок бензина.

Двигатель внутреннего сгорания работает на смеси воздуха и распыленного топлива, Для воспламенения смеси нужна определенная концентрация топлива. Газ, в сравнении с бензином, горит при меньших концентрациях, т.е. при более "бедных" смесях. В случае повышения концентрации газа и обогащения смеси можно добиться увеличения мощности двигателя. Обедняя смесь, наоборот, можно понизить мощность. Возникает возможность изменением состава смеси регулировать мощность двигателя: газ как топливо значительно "послушнее" бензина.

Эксплуатация показала, что автомобили на газе более выносливы -- в полтора-два раза дольше работают без ремонта. При сгорании газа образуется меньше твердых частиц и золы, вызывающих повышенный износ цилиндров и поршней двигателя. Кроме того, масляная пленка дольше держится на металлических поверхностях -- ее не смывает жидкое топливо, и, наконец, газ практически не вызывает коррозию металла,

Несмотря на многочисленные достоинства природного газа, закрывать заправочные станции и выбрасывать бензиновые канистры еще рано.

Метан

В переходе на газовое топливо есть свои сложности. Так, например, плотность природного метана в тысячу раз ниже плотности бензина. Поэтому, если заправлять автомобиль метаном при атмосферном давлении, то для равного с бензином количества топлива понадобится бак в 1000 раз больше. Чтобы не возить огромный прицеп с топливом, необходимо увеличить плотность газа. Это можно достичь сжатием метана до 20...25 МПа (200...250 атмосфер (1ат = 9,81х104 Па)). Для хранения в таком состоянии используются специальные баллоны.

Пропан-бутан

Пропан-бутан -- синтетическое топливо. Его получают из нефти и сконденсированных нефтяных попутных газов. Чтобы эта смесь оставалась жидкой, ее хранят и перевозят под давлением в 1,6 МПа (16 атмосфер). Газобаллонная аппаратура для сжиженного пропан-бутана несколько проще. Процесс заправки машин на газонаполнительных станциях несложен и очень похож на заправку бензином.

По своим свойствам сжиженный пропан-бутан почти не отличается от сжатого природного газа. То же высокое октановое число, те же неплохие экологические и эксплуатационные показатели. Есть у сжиженного пропан-бутана и преимущество перед метаном -- 225 литров этого горючего хватает на пробег около 500 километров, а метана, помещающегося в восьми баллонах -- на вдвое меньший. Сейчас на сжиженном газе работает вдвое меньше машин, чем на сжатом и вот почему. Пропан-бутана получают в 20...25 раз меньше, чем добывают природного газа.

Водородная энергетика сегодня

Возможность повсеместного использования водорода как топлива сегодня выглядит менее обнадеживающе, чем, скажем, 30 лет назад. Это направление энергетики предполагает получение водорода в крупных масштабах путем разложения воды, транспортировку "горючего" к пунктам потребления и использование его практически во всех случаях, где сейчас сжигают ископаемое топливо. Находятся горячие головы, которые предлагают уже сегодня полностью отказаться от централизованного энергоснабжения, чтобы производить электроэнергию с помощью водорода в топливных элементах у самих потребителей [5].

О водородной энергетике мечтают давно:

удельная теплота сгорания водорода в три раза выше, чем у нефти или бензина;

продуктом сгорания водорода является водяной пар;

ресурсы сырья для получения водорода безграничны.

Но водород как горючее имеет ряд недостатков:

он более взрывоопасен, чем метан;

объемная теплота сгорания водорода в три раза меньше, чем у природного газа.

Путь к безвредной энергетике труден и многоэтапен. Здесь возможны разные решения. Тем не менее, в некоторых случаях применение водорода как топлива не только полезно с экологической точки зрения, но и вполне экономически оправдано.

К примеру, загрязнение атмосферы автомобильными выхлопными газами. Замена всех бензиновых двигателей на водородные нереальна, т.к. она связана с огромными материальными затратами. Однако, почти без всяких изменений в двигателе, можно использовать бензин с 10-процентной водородной добавкой. Даже этот небольшой шаг резко улучшит экологическую обстановку в крупных городах.

Водород -- аккумулятор энергии

Очевидным становится и то, что водород может ослабить некоторые напряженные проблемы атомной энергетики. Разрушительные аварии АЭС (Чернобыль, Тримайл-Айпенд) показали, что наиболее опасны "маневры" мощностью реактора, то есть изменение интенсивности ядерной реакции [3]. Следовательно, для обеспечения безопасности желательно ограничиваться стационарным режимом работы АЭС.

Эта стабильность ограничивает возможности энергосистем в части выравнивания нагрузок, когда, например, в рабочее время потребление энергии резко возрастает, а по ночам и в выходные дни падает. Пока не существует удовлетворительного способа аккумулировать электроэнергию, но на помощь может прийти водород. Расчеты показывают, что с помощью аккумулирования водорода затраты на производство электроэнергии могут быть снижены примерно на 15% по сравнению с традиционным способом -АЭС плюс пиковая теплоэлектростанция на водороде.

Аккумулировать водород можно не только в сжатом и жидком виде, а и в специально разработанных аккумуляторах водорода. Принцип работы таких аккумуляторов основан на свойстве полиметаллических композиций поглощать водород. Один из видов такого аккумулятора представляет собой емкость из нержавеющей стали заполненную сплавом титана, ванадия и железа. Сплав обладает свойством выделять чистый водород, даже если он аккумулировался с примесью кислорода и влаги.

На АЭС за счет излишков электроэнергии можно производить водород и для нужд промышленности. Химическая промышленность -самый крупный потребитель водорода. Его используют в качестве сырья, например, для производства аммиака. Такой энерготехнологический комплекс может снизить на 10...17% расходы топлива по сравнению с существующей раздельной системой производства электроэнергии, водорода и аммиака.

Но в целом эффективность таких систем не очень высока из-за сравнительно низкого коэффициента полезного действия АЭС. КПД современных АЭС не превышает 33%, в то время как у теплоэлектростанций -- 39%.

Невысокий коэффициент полезного действия АЭС обусловлен сравнительно низкой температурой водяного пара (около 300oС), нагреваемого теплом атомного реактора. Условия безопасности не позволяют увеличить эту температуру, а она определяет КПД паровой турбины и, следовательно, всей АЭС.

Промышленные методы получения водорода

Есть два направления промышленного получения водорода -электролиз и плазмохимия. Электролиз очень прост: в электролит, то есть в токопроводящую среду (классический вариант -- вода с небольшим количеством щелочи), помещают два электрода и подводят к ним напряжение. Однако, в установках, работающих по этому принципу, для получения одного кубометра водорода требуется 4...5 киловатт-часов электроэнергии, что довольно дорого -- производство эквивалентного по теплотворной способности количества бензина обходится втрое дешевле.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.