Мартин Гарднер - Математические чудеса и тайны

Тут можно читать бесплатно Мартин Гарднер - Математические чудеса и тайны. Жанр: Домоводство, Дом и семья / Развлечения, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Мартин Гарднер - Математические чудеса и тайны

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту free.libs@yandex.ru для удаления материала

Мартин Гарднер - Математические чудеса и тайны краткое содержание

Прочтите описание перед тем, как прочитать онлайн книгу «Мартин Гарднер - Математические чудеса и тайны» бесплатно полную версию:

Мартин Гарднер - Математические чудеса и тайны читать онлайн бесплатно

Мартин Гарднер - Математические чудеса и тайны - читать книгу онлайн бесплатно, автор Мартин Гарднер

Гарднер Мартин

"МАТЕМАТИЧЕСКИЕ ЧУДЕСА И ТАЙНЫ"

Предисловие редактора к русскому изданию

Перед вами обычная квадратная шахматная сетка из 64 клеток. На ваших глазах делается несколько разрезов и из получившихся частей составляется прямоугольник, в котором, однако, всего 63 клетки!

Вы задумали число — одно из тех, что написаны на карточках, разбросанных по столу. Ваш партнер поочередно трогает карточки указкой, а вы в это время произносите про себя по буквам задуманное число, и когда вы доходите до последней буквы, указка останавливается как раз на вашем числе!

Фокусы? Да, если хотите; а лучше сказать — эксперименты, основанные на математике, на свойствах фигур и чисел и лишь облеченные в несколько экстравагантную форму. И понять суть того или иного эксперимента — это значит понять пусть небольшую, но точную математическую закономерность.

Вот этой скрытой математичностью и интересна книга Мартина Гарднера. Скрытой — потому что по большей части сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных; но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Впрочем, в отдельных, более интересных случаях (отмеченных числами с круглой скобкой) мы позволили себе сопроводить изложение автора небольшими примечаниями, выявляющими математическую суть его построений, эти примечания помещены в конце книги.

Математические фокусы — очень своеобразная форма демонстрации математических закономерностей.

Если при учебном изложении стремятся к возможно большему раскрытию идеи, то здесь для достижения эффективности и занимательности, наоборот, как можно хитрее маскируют суть дела. Именно поэтому вместо отвлеченных чисел так часто используются различные предметы или наборы предметов, связанные с числами: домино, спички, часы, календарь, монеты и даже карты (разумеется, такое использование карт не имеет ничего общего с бессмысленным времяпровождением азартных игроков; как указывает автор, здесь карты рассматриваются тросто как одинаковые предметы, которые удобно считать; имеющиеся на них изображения не играют при этом никакой роли-»).

Мы надеемся, что книга Гарднера будет интересна многим читателям: юным участникам иисольных математических кружков, взрослым «неорганизованным» любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.

Г. Е. Шилов

Из предисловия автора

Подобно многим другим предметам, находящимся на стыке двух дисциплин, математические фокусы не пользуются особым вниманием ни у математиков, ни у фокусников. Первые склонны рассматривать их как пустую забаву, вторые пренебрегают ими как слишком скучным делом. Математические фокусы, скажем прямо, не принадлежат к той категории фокусов, которая может держать зачарованной аудиторию из неискушенных в математике зрителей; такие фокусы обычно отнимают много времени, и они не слишком эффектны; с другой стороны, вряд ли найдется человек, собирающийся черпать глубокие математические истины из их созерцания.

И все-таки математические фокусы, подобно шахматам, имеют свою особую прелесть. В шахматах объединено изящество математических построений с удовольствием, которое может доставить игра. В математических же фокусах изящество математических построений соединяется с занимательностью. Неудивительно поэтому, что наибольшее наслаждение они приносят тому, кто одновременно знаком с обеими этими областями.

Настоящая книга, насколько мне известно, представляет собой первую попытку обзора всей области современного математического фокуса. Большая часть материала книги взята из специальной литературы посвященной фокусам, а не из развлекательной математической литературы. По этой причине лица, изучавшие развлекательную математическую литературу, но незнакомые с современной специальной литературой, посвященной фокусам, вероятно, встретят в этой книге новую область развлекательного знания — новое богатое поле, о существовании которого они могли совершенно не подозревать.

Нью-Йорк, 1955 г.

Мартин Гарднер

Глава первая. МАТЕМАТИЧЕСКИЕ ФОКУСЫ С КАРТАМИ

Игральные карты обладают некоторыми специфическими свойствами, которые можно использовать при составлении фокусов математического характера. Мы укажем пять таких свойств.

1. Карты можно рассматривать просто как одинаковые предметы, которые удобно считать; имеющиеся на них изображения не играют при этом никакой роли.

С таким же успехом можно было бы пользоваться камешками, спичками или листочками бумаги.

2. Картам можно приписывать числовые значения от 1 до 13 в зависимости от того, что изображено на их лицевой стороне (при этом валет, дама и король принимаются соответственно за 11, 12 и 13)[1]).

3. Их можно делить на четыре масти или на чёрные и красные карты.

4. Каждая карта имеет лицевую и обратную стороны.

5. Карты компактны и одинаковы по размеру. Это позволяет раскладывать их различным образом, группируя в ряды или составляя кучки, которые тут же можно легко расстроить, просто смешав карты.

Благодаря такому обилию возможностей карточные фокусы должны были появиться очень давно, и можно считать, что математические фокусы с картами, безусловно, столь же стары, как сама игра в карты.

По-видимому, наиболее раннее обсуждение карточных фокусов, выполненное математиком, встречается в развлекательной книжке Клода, Гаспара Баше (Claud Gaspard Bachet «Problemes plaisants et delectables»), вышедшей во Франции в 1612 году. Впоследствии упоминания о карточных фокусах появлялись во многих книжках, посвященных математическим развлечениям.

Первым и, возможно, единственным философом, снизошедшим до рассмотрения карточных фокусов, был американец Чарлз Пейрс (Charles Peirce). В одной из своих статей он признается, что в 1860 году «состряпал» несколько необыкновенных карточных фокусов, основанных, пользуясь его терминологией, на «циклической арифметике». Два таких фокуса он подробно описывает под названием «первый курьез» и «второй курьез».

«Первый курьез» основан на теореме Ферма. Для одного лишь описания способа его демонстрации потребовалось 13 страниц н дополнительно 52 страницы были заняты объяснением его сущности. И хотя Пейрс сообщает о «неизменном интересе и изумлении публики», вызываемом его фокусом, кульминационный эффект этого фокуса представляется настолько не соответствующим сложности приготовлений, что трудно поверить, что зрители не погружались в сон задолго до окончания его демонстрации.

Вот пример того, как в результате видоизменения способа демонстрации одного старого фокуса необычайно возросла его занимательность.

Шестнадцать карт раскладываются на столе лицевой стороной кверху в виде квадрата по четыре карты в ряд. Кому-нибудь предлагается задумать одну карту и сообщить показывающему, в каком вертикальном ряду она лежит. Затем карты собираются правой рукой по вертикальным рядам и последовательно складываются в левую руку. После этого карты снова раскладываются в виде квадрата последовательно по горизонталям; таким образом, карты, лежавшие при первоначальной раскладке в одном и том же вертикальном ряду, теперь оказываются в одном к том же горизонтальном ряду. Показывающему нужно запомнить, в каком из них лежит теперь задуманная карта. Далее зрителя просят еще раз указать, в каком вертикальном ряду он видит свою карту, Понятно, что после этого показывающий может сразу же указать задуманную карту, которая будет лежать на пересечении только что названного вертикального ряда и горизонтального ряда, в котором, как известно, она должна находиться. Успех этого фокуса, конечно, зависит от того, следит ли зритель за процедурой настолько внимательно, чтобы распознать суть дела.

Пять кучек карт

А теперь расскажем, как этот же самый принцип используется в другом случае.

Показывающий усаживается за стол вместе с четырьмя зрителями. Он сдает каждому (включая себя) по пяти карт, предлагает всем посмотреть их и одну задумать. Затем собирает карты, раскладывает их на столе в пять кучек и просит кого-нибудь указать ему одну из них. Далее берет эту кучку в руки, раскрывает карты веером, лицевой стороной к зрителям, и спрашивает, видит ли кто-нибудь из них задуманную карту. Если да, то показывающий (так и не заглянув ни разу в карты) сразу же ее вытаскивает. Эта процедура повторяется с каждой из кучек, пока все задуманные карты не будут обнаружены. В некоторых кучках задуманных карт может вовсе не оказаться, в других же их может быть две и более, но в любом случае карты отгадываются показывающим безошибочно.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.