Фрэнсис Эшкрофт - На грани возможного: Наука выживания Страница 54

Тут можно читать бесплатно Фрэнсис Эшкрофт - На грани возможного: Наука выживания. Жанр: Домоводство, Дом и семья / Спорт, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Фрэнсис Эшкрофт - На грани возможного: Наука выживания читать онлайн бесплатно

Фрэнсис Эшкрофт - На грани возможного: Наука выживания - читать книгу онлайн бесплатно, автор Фрэнсис Эшкрофт

При микрогравитации значительно уменьшается выработка эритроцитов. Срок жизни эритроцита недолог – всего 120 дней, поэтому сокращение их воспроизводства приводит к снижению их общего количества в кровеносной системе. Сокращение начинается в течение четырех дней после погружения в невесомость и стабилизируется через 40–60 дней. За время десятидневной экспедиции космической лаборатории (модуля «Спейслэб») количество эритроцитов у участников снизилось примерно на 10 % – при более длительных полетах снижение бывало и больше.

Как мы помним из главы 1, выработка эритроцитов контролируется гормоном эритропоэтином, на секрецию которого влияет уровень кислорода в тканях. Чем выше содержание кислорода, тем меньше высвобождается эритропоэтина и соответственно меньше производится эритроцитов. Поэтому изначально считалось, что выработка эритроцитов сокращается из-за высокого содержания кислорода в первых космических аппаратах. Однако затем гипотезу эту пришлось пересмотреть, поскольку и в более поздних полетах, даже после перехода на дыхательные смеси, близкие к атмосферному составу, количество эритроцитов все равно продолжало падать. Сейчас причиной снижения количества эритроцитов считаются изменения в объеме крови, вызываемые микрогравитацией. Прилив крови к грудной клетке в состоянии невесомости предположительно вызывает обманчивое «ощущение» избытка крови у организма и заставляет его уменьшить производство кровяных телец. При этом падает и уровень эритропоэтина. Однако разительное снижение общей массы эритроцитов объясняется не только сокращением их воспроизводства – помимо этого гибнут красные кровяные тельца, готовящиеся появиться на свет из костного мозга.

Сон

Астронавты часто жалуются на то, что в космосе им трудно спать. Отчасти, конечно, это объясняется необычностью самой обстановки. Во-вторых, в космическом корабле довольно шумно, и коллеги, несущие вахту, не всегда соблюдают тишину. Однако, судя по всему, основная причина бессонницы состоит в нарушении так называемых циркадных ритмов организма (биологических часов). Многие физиологические процессы, в число которых входит и сон, управляются циркадными ритмами, которые, в свою очередь, реагируют на смену дня и ночи. Установлено, что в северных широтах во время полярного лета, когда солнце почти не заходит, люди спят гораздо меньше, чем во время полярной ночи зимой. Поскольку космический корабль делает виток вокруг Земли за 90 минут, солнце всходит и заходит с той же частотой, и смена дня и ночи у астронавта существенно сбивается.

Добавляет проблем и микрогравитация. Чтобы не плавать во сне по кораблю, астронавты упаковываются в прикрепленные к стенам спальные мешки. Для хорошего сна большинству людей необходимо ощущение безопасности, но при микрогравитации давление отсутствует, поэтому человек не чувствует, что лежит на поверхности. Некоторые астронавты, чтобы облегчить засыпание, надевают специальную повязку на лоб, создающую ощущение подушки под головой. Такие же повязки надевают на колени, чтобы можно было их согнуть во сне. Кроме того, астронавтам приходится спать в воздушном потоке, чтобы выдыхаемый углекислый газ не скапливался и не вызвал удушья. На Земле постоянную циркуляцию воздуха создает ветер или конвекционные потоки, но при микрогравитации конвекционного обмена, способного унести выдыхаемый углекислый газ, нет, поскольку теплый воздух никуда не поднимается (в космосе теплый и холодный воздух, как и все остальное, не имеют веса).

Инфекция

В каждом из нас живут миллионы микроорганизмов, сопровождающие нас повсюду, даже в космосе. На коже здорового человека находится более триллиона (1012) бактерий, и еще многие миллионы в кишечнике. Около десяти миллионов мы сбрасываем ежедневно вместе с чешуйками кожи. В космосе поговорка «кашляешь и чихаешь – заразу распространяешь» обретает особую актуальность. Если на Земле воздушно-капельная инфекция быстро оседает вниз и наносит меньше вреда, без гравитации она повисает в пространстве мелкой взвесью, которую вдыхают другие космонавты. Мелкие заболевания были бичом первых экспедиций – больше половины экипажа страдали от кожных, кишечных и дыхательных инфекций, но после того как в первых экспедициях программы «Аполлон» стали проводить предполетный карантин и тщательную дезинфекцию корабля до и во время полета, заболеваемость существенно уменьшилась.

Космическая болезнь

Движения астронавта, впервые попавшего в космос, раскоординированы, он промахивается, даже просто пытаясь ухватиться за нужный предмет или взять что-то в руки. У многих возникает ощущение кувырка или переворачивания вверх тормашками, может начаться головокружение. От космической болезни страдают примерно две трети астронавтов – иногда в довольно острой форме. В числе симптомов – головная боль, тошнота, головокружение, потеря аппетита, апатия, сонливость, раздражительность. Неожиданно может начаться рвота, зачастую даже без позывов – беспорядочными приступами, между которыми человек чувствует себя вполне нормально. Космическая болезнь способна серьезно отравить жизнь астронавту, мешая выполнять работу, а для человека, облаченного в скафандр, может окончиться и летальным исходом. Особенно плохо то, что космическая болезнь накрывает астронавта в первый же час после попадания в условия микрогравитации – на начальном, самом важном, этапе полета. К счастью, через два-три дня космическая болезнь, как правило, проходит.

Обычно космическая болезнь начинается с запрокидывания головы или кивка, хотя иногда ее может вызвать даже оптическая дезориентация. Если вам знакома морская болезнь, то вы, наверное, знаете по себе, что можно облегчить симптомы, сосредоточив взгляд на линии горизонта. Астронавтам сложнее, поскольку все ориентиры сбиты. В космосе нет «верха» и «низа». Мир вокруг них перевернут, а ориентиры постоянно перемещаются, как в знаменитом парадоксе Витгенштейна с зайцем и уткой. Некоторых астронавтов это поначалу сильно выбивает из колеи, другие достаточно быстро привыкают. Вот что рассказывает Джон Гленн: «Перед полетом врачи предупреждали, что у меня может начаться неконтролируемая тошнота или головокружение, когда жидкость во внутреннем ухе начнет свободно бултыхаться в невесомости… Но ничего подобного не было… Невесомость мне очень понравилась». Однако во время своего короткого полета Гленн сидел пристегнутый ремнями к креслу. Современные же астронавты свободно перемещаются по кораблю, и самых невезучих приступ космической болезни может накрыть даже при виде перевернувшегося вверх тормашками товарища, не говоря уже о собственном акробатическом кульбите.

Несмотря на то что причина космической болезни пока не установлена, предположительно ее провоцирует конфликт сигналов о положении тела в пространстве. Пространственная ориентация создается совокупностью сигналов от органов равновесия во внутреннем ухе, от мышечных и суставных рецепторов, «рассказывающих» о положении конечностей, и от визуальных ориентиров. В космосе многие рецепторы перестают получать привычные данные. Визуальные ориентиры сбиваются, поскольку шаттл, например, летает «вверх тормашками» по отношению к Земле, повернувшись к ней хвостовым стабилизатором. В первые несколько дней экипаж обычно пытается сохранять привычную «земную» ориентацию (т. е., по сути, они плавают по кораблю вверх ногами), привыкая к дестабилизирующему воздействию невесомости, но позже, освоившись в новых условиях, располагают тело в пространстве как придется.

Цена успеха

Отсроченные последствия микрогравитации включают потерю костной массы и мышечную атрофию, которые во время длительных полетов могут быть весьма существенными. Во время полета они не особенно ощущаются, однако по возвращении на Землю могут доставить немало неприятностей. На восстановление костной и мышечной массы до предполетного состояния уходит немало времени – почти столько же, сколько на сам полет, – и смогут ли они восстановиться полностью после сверхдлительных экспедиций (на Марс, например), науке пока неизвестно.

Кость – это живая ткань, которая обновляется на протяжении всей человеческой жизни. Чем больше нагрузка, тем толще кость, и наоборот. При уменьшении давления – после выхода из гравитационного поля Земли – кость становится более тонкой и хрупкой. Именно поэтому разрушению в долгосрочных космических полетах подвергаются прежде всего кости, выдерживающие весовую нагрузку. По мере истощения из кости вымывается кальций, что тоже добавляет проблем, поскольку повышение уровня кальция в моче грозит образованием камней в почках. Деминерализация приводит к ломкости костей (остеопорозу) и по возвращении на Землю увеличивает риск переломов. В долгом полете потеря костной массы может быть весьма значительной – около 1 % в месяц. За десять месяцев при микрогравитации минеральная плотность костей уменьшается примерно в таких же объемах, как в возрасте с 30 до 75 лет на Земле.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.