Неизвестен Автор - Мозг (сборник) Страница 30
Неизвестен Автор - Мозг (сборник) читать онлайн бесплатно
Выдвинуто несколько гипотез для объяснения того, как достигается такая замечательная точность. Некоторые исследователи считают возможным объяснить это тем, что растущие аксоны поддерживают такие же топографические взаимоотношения друг с другом, как и тела их клеток. Другие подчеркивают значение временного аспекта (в частности, критическим является момент, к которому различные группы волокон достигают области своего назначения). Одной из гипотез, в которой делается попытка объяснения всех наблюдаемых особенностей роста, может послужить гипотеза химического сродства, сформулированная Р. Сперри (R. Sperry) из Калифорнийского технологического института. Согласно его точке зрения, большинство нейронов (или, что более вероятно, большинство малых популяций нейронов) приобретают химические различия на ранней стадии своего развития в зависимости от занимаемого положения, и эта их дифференцированность выражается в наличии соответствующих меток, которые и позволяют аксонам узнавать либо аналогичную, либо комплементарную метку на поверхности нейронов-мишеней.
Одним из экспериментальных подходов к изучению того, как нейроны образуют специфическую пространственную картину связей в развивающемся мозге, является воздействие на проекцию сетчатки в зрительном тектуме среднего мозга. При таком подходе, впервые разработанном Р. Сперри из Калифорнийского технологического института, глазное яблоко взрослой лягушки (или головастика на разных стадиях развития) поворачивают или трансплантируют. Позднее, после регенерации зрительного нерва (или после того как головастик превратится в лягушку и аксоны ганглиозных клеток сетчатки, составляющие зрительный нерв, образуют связи со зрительным тектумом), можно видеть, какое воздействие оказала операция на поведение лягушки. Данная серия рисунков, основанная на работе Сперри, вначале демонстрирует поведение нормальной лягушки (А). В первом эксперименте (Б) правый глаз был повернут на 180°; некоторое время спустя после регенерации зрительного нерва оказывалось, что попытка лягушки напасть на приманку, помещенную в верхнем поле зрения, была ошибочной точно на 180°. В следующем эксперименте (В) левый глаз был заменен на правый таким образом, что инвертировалась только дорсовентральная ось (толстая стрелка); в этом случае лягушка делала прыжок вперед к приманке, но в сторону нижнего, а не верхнего поля зрения. Затем (эксперимент Г) была осуществлена сходная трансплантация, но на этот раз глаз был повернут в передне-заднем направлении (тонкая стрелка); лягушка ощущала, что приманка располагалась в верхнем поле зрения, но прыгала вперед, вместо того, чтобы прыгать назад. Вывод из этих экспериментов согласуется с предположением о том, что волокна зрительного нерва при регенерации всегда прорастают опять в ту же часть зрительного тектума, которую они первоначально иннервировали, и что во время нормального развития они "находят путь" к правильному местоположению в тектуме сходным образом. Эти результаты объясняются гипотезой, что как ганглиозные клетки сетчатки, так и нейроны-мишени в тектуме несут химические признаки, помогающие им идентифицировать друг друга.
Хотя эта проблема может быть распространена на все части нервной системы, наиболее интенсивно она исследуется на двух системах - системе иннервации мускулатуры конечностей мотонейронами спинного мозга и системе проекции ганглиозных клеток сетчатки к месту их назначения (у низших позвоночных) в зрительный тектум мозга. Изучение иннервации мышц показывает, что при нормальных обстоятельствах на ранней стадии развития небольшие популяции мотонейронов, называемые пулами, отделяются друг от друга: каждый пул мотонейронов иннервирует преимущественно отдельную мышцу конечности, и при этом случается очень мало ошибок. Хотя пространственное соответствие при иннервации в норме является точным, точность эта не абсолютна. Поэтому если заднюю конечность куриного эмбриона-донора трансплантировать рядом с ногой эмбриона-реципиента, то мышцы дополнительной конечности будут иннервироваться неизменно пулами мотонейронов, которые в норме иннервируют или мускулатуру туловища, или мускулатуру тазового пояса. Картина иннервации явно аномальная, однако тот факт, что мышцы трансплантированной конечности всегда иннервируются одними и теми же популяциями клеток, служит убедительным подтверждением того, что даже при этих необычных условиях мотонейроны руководствуются некоторым определенным (пока еще неустановленным) набором правил.
Ретино-тектальная система оказалась особенно подходящей для анализа обсуждаемой проблемы. На эмбриональных и личиночных стадиях развития амфибий удается производить различные экспериментальные манипуляции, такие, как поворот глазного яблока, составление глаза из различных сегментов двух или более сетчаток, удаление или поворот частей тектума. После окончательного развития системы оказывается возможным анатомически, электрофизиологически, а также в поведенческих опытах выявить связи, сформированные ганглиозными клетками сетчатки. Кроме того, у рыб и амфибий зрительный нерв (состоящий из аксонов ганглиозных клеток сетчатки) способен регенерировать после разрушения, что позволяет проводить аналогичные эксперименты на ювенильных и взрослых животных. В настоящее время на этой системе получено огромное количество данных, и мы суммируем здесь только некоторые основные достижения.
Пожалуй, наиболее важные результаты в исследованиях такого рода получены в двух основных группах экспериментов. В первой группе у лягушек и хвостатых амфибии перерезали зрительный нерв и поворачивали глаз на 180°. В другой группе у золотой рыбки и лягушки иссекали участки зрительного тектума и либо поворачивали их, либо пересаживали в другую часть тектума. В обеих группах экспериментов регенерирующие волокна зрительного нерва, как это могло быть зарегистрировано в электрофизиологических или поведенческих опытах, прорастали в те же самые участки тектума, которые они исходно иннервировали. Наиболее простое объяснение этих результатов состоит в том, что аксоны ганглиозных клеток и их нейроны-адресаты в зрительном тектуме маркированы одинаковым образом и что регенерирующие аксоны растут до тех пор, пока не "опознают" соответствующие метки на нужных нейронах тектума.
Трудно отрицать возможность того, что при этих обстоятельствах волокна различных участков сетчатки смогли оставить свой след на соответствующих группах клеток тектума и что аксоны или нейроны тектума сумели "запомнить" свое предыдущее положение. Однако есть основания полагать, что подобный механизм если и срабатывает, то только на начальных стадиях развития системы. Так, если развивающийся глаз лягушки перевернуть ранее некоторой критической стадии развития, то проекция сетчатки на гектум останется нормальной. Если, однако, поворот совершить после критического момента, то и сетчаточная проекция обязательно повернется на столько же градусов. Аналогичным образом, если перевернуть на 180° весь зрительный тектум зародыша в направлении от хвоста к голове (вместе с частью переднего мозга, лежащего впереди него), то и сетчаточная проекция также инвертируется.
Из этих экспериментов следует, что существует определенная стадия в развитии большинства нервных центров, во время которой центры становятся топографически поляризованными, в результате чего входящие в их состав нейроны приобретают определенные характеристики, которые задают пространственную организацию проекции в целом. М. Джекобсон (М. Jacobson) из Медицинской школы Университета Майами несколько лет назад показал, что сетчатка шпорцевой лягушки Xenopus laevis становится поляризованной примерно к тому времени, когда первые ганглиозные клетки прекращают делиться. Хотя на этой стадии имеется еще только около 1% ганглиозных клеток, будущая пространственная структура проекции сетчатки в тектум, по-видимому, уже детерминируется в это время. Совершенно непонятно, каким образом нейроны получают информацию о положении и как она реализуется в процессе роста их отростков. Однако представляется вероятным, что механизмы детерминации полярности не являются специфичными для нервной системы - они едины для всего организма. Р. Хант (R. Hunt) из Университета Джонса Гопкинса, а также Джекобсон обнаружили, что если развивающийся глаз трансплантировать головастику на бок до начала периода осевой спецификации и оставить в этом аномальном положении на весь критический период, то затем, после ретрансплантации в глазную впадину, ганглиозные клетки формируют связи со зрительным тектумом в соответствии с тем, как глаз был ориентирован в тот период, когда он находился на боку, а не в соответствии с его новым положением в глазнице.
Когда растущий аксон достигает своего адресата, будь то другая группа нейронов или ткань эффектора, например совокупность мышечных или железистых клеток, он образует с ними специализированные функциональные контакты синапсы. Именно в этих местах информация передается от одной клетки к другой обычно с помощью малых количеств соответствующих медиаторов (см. Л. Иверсен "Химия мозга"). Многочисленные феноменологические данные позволяют предположить, что в синаптической области осуществляется двусторонний перенос веществ, необходимых для выживания и нормального функционирования как пресинаптической, так и постсинаптической клеток. Эти вещества, в комплексе отнесенные к трофическим факторам, являются в значительной мере гипотетическими; только одно (фактор роста нервов) было выявлено и охарактеризовано химически. Это вещество, впервые идентифицированное В. Хамбургером (V. Hamburger) и Р. Леви-Монтальчини из Вашингтонского университета еще в 50-х годах, оказалось белком, существующим в норме в виде двух идентичных аминокислотных цепей, каждая из которых имеет молекулярный вес несколько больше 13000.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.