Питание и долголетие - Медведев Жорес Александрович Страница 5
Питание и долголетие - Медведев Жорес Александрович читать онлайн бесплатно
Качественный состав жиров пищи, особенно растительной, и строение жиров нашего тела могут сильно различаться. Лишь небольшая часть жирных кислот без биохимических изменений используется для образования клеточных структур и запасных жиров в тканях. Большая часть жирных кислот подвергается сложным перестройкам и реконструкции в специфические для человека жиры. Разные органы и ткани имеют резервные и структурные жиры с неодинаковым составом жирных кислот. В подкожной жировой клетчатке преобладают жиры, содержащие насыщенные жирные кислоты, имеющие более плотную консистенцию. Они обеспечивают амортизацию, теплоизоляцию и резервы энергии и воды. Появление таких плотных насыщенных жиров стало возможным лишь у теплокровных животных с постоянной температурой тела. У холоднокровных животных преобладают ненасыщенные жидкие жиры, образованные жирными кислотами с большим числом двойных связей. Запасные жиры обычно образованы жирными кислотами с короткими углеводородными цепочками, которые при необходимости легче и быстрее утилизируются в энергетическом обмене. Клеточные мембраны содержат жирные кислоты с длинными углеводородными цепочками и с большим числом двойных связей. Именно двойные связи создают эластичность мембран и легкую изменяемость формы клеток. Разные типы клеток имеют неодинаковый состав жирных кислот в своих оболочках. Мигрирующим, подобно амебам, лимфоцитам, постоянно меняющим форму, требуется иной набор жирных кислот, чем эритроцитам, приплюснутая форма которых должна быть стабильной. Сальные железы кожи, обеспечивающие эластичность и водонепроницаемость кожных покровов и волос, выделяют уникальные смеси жирных кислот и холестерина, которые не окисляются кислородом воздуха.
Биохимические системы человека могут образовывать жирные кислоты из углеводов и аминокислот. Однако, как было обнаружено в исследованиях, проводившихся в 1930-х годах, наш организм не способен к синтезу трех жирных кислот – линолевой, линоленовой и арахидоновой, необходимых для клеточных мембран. Эти полиненасыщенные жирные кислоты обязательно, как и витамины, должны поступать с пищей. Они были обозначены как незаменимые. Потребность взрослого человека в этих жирных кислотах не превышает 1 г в сутки. В общей литературе по проблемам питания и по физиологии принято делить жирные кислоты на несколько групп в зависимости от длины их углеводородной цепочки и числа двойных (ненасыщенных) связей в составе этих цепочек. Содержащаяся в наибольшем количестве в запасных жирах млекопитающих стеариновая кислота, СН3(СН2)16СООН, не имеющая двойных связей, обозначается символом 18:0, где первая цифра говорит о числе углеводородных атомов, а вторая указывает число двойных связей. В тканях человека из этой группы насыщенных жирных кислот наиболее известны каприловая (10:0), лауриновая (12:0), миристиновая (14:0) и пальмитиновая (16:0). Ко второй группе относятся жидкие (при комнатной температуре) мононенасыщенные жирные кислоты, имеющие в своей углеводородной цепи лишь одну двойную связь. Наиболее распространенной среди них является олеиновая кислота, СН3(СН2 )7СН=СН(СН2)7СООН, символ которой 18:1 показывает одну двойную связь. В тканях человека есть несколько жирных кислот этого типа с цифровыми символами: 20:1, 22:1 и 24:1. К следующей группе относятся жидкие полиненасыщенные жирные кислоты, имеющие в составе своей углеводородной цепи две, три, четыре, пять или даже шесть двойных связей: 18:2, 20:2, 20:3, 20:4, 20:5, 22:4, 22:5, 22:6. Линолевая кислота (18:2), относящаяся к этой группе, является незаменимой. Двойные связи в составе жирных кислот играют роль своеобразных молекулярных суставов. Насыщенные жирные кислоты имеют форму устойчивого стержня. Ненасыщенные жирные кислоты могут сгибаться по месту менее прочной двойной связи. Именно эта эластичность создает молекулярные вибрации и жидкое состояние. Чем больше двойных связей в жирных кислотах, тем ниже температура застывания жира. Эта особенность важна для функций клеточных мембран. Однако из-за наличия двойных связей, то есть свободных ненасыщенных валентностей в молекулах, они легче подвергаются окислению, меняющему их свойства и нарушающему функции клеточных мембран. Несколько теорий старения клеток связывают этот процесс с накоплением окислительных изменений в клеточных мембранах. Это, безусловно, справедливо для эритроцитов человека и других млекопитающих. Длительность их циркуляции в крови напрямую зависит от скорости накопления окислительных изменений в их мембранах. Прочность мембран уменьшается при окислении, и они разрушаются. Долгоживущие виды среди птиц и млекопитающих имеют более высокую пропорцию насыщенных жирных кислот в составе клеточных мембран [1].
(window.adrunTag = window.adrunTag || []).push({v: 1, el: 'adrun-4-390', c: 4, b: 390})Рыбные жиры и японское долгожительство
Лечебные свойства рыбных жиров были обнаружены в начале XIX в., задолго до открытия витаминов. Жиры, выделенные из печени трески, начали применять для лечения рахита у детей и костных заболеваний более 150 лет назад [2]. В начале XX в. проводилось много исследований диеты арктических народов, эскимосов и инуитов Канады и Исландии, которые, как обнаружилось, не болели атеросклерозом. Это обычно связывали с их преимущественно рыбной диетой. Жиры тюленей и других морских млекопитающих тоже имеют высокие пропорции ненасыщенных жирных кислот. Однако теория о способности рыбных жиров замедлять процессы старения сформировалась в результате изучения долгожительства японцев. В 1983 г. в опубликованных ВОЗ статистических ежегодниках «The World Health Report» Япония по ожидаемой продолжительности жизни (74,2 года для мужчин и 79,8 для женщин) оказалась на первом месте, опередив прежних рекордсменов Швейцарию и Швецию. Объяснить японское долгожительство какими-либо социальными или экономическими факторами было очень трудно. По уровню жизни населения Япония тогда заметно отставала от США и Западной Европы. Расходы на здравоохранение в расчете на каждого жителя были в Японии в два раза ниже, чем в Европе и в три раза ниже, чем в США. Пенсионное обеспечение японцев всегда было очень скромным. Отпуск японских рабочих не превышал двух недель, а продолжительность рабочей недели была на 11 часов больше, чем в развитых западных странах. Японцы испытывали больше стрессов из-за тесноты в жилищах, напряженной обстановки в учебных заведениях и на работе, в результате нередких для этой страны землетрясений и цунами. Частота инсультов в Японии в два раза выше, чем в Великобритании. Кароши, внезапная смерть на работе от перенапряжения, – это специфическое японское явление. В аналитическом обзоре «Почему японцы живут дольше?» британские эксперты не смогли найти четкого ответа на поставленный вопрос [3]. Так в условиях неопределенности и родилась, сначала в массовой прессе, «рыбная теория» японского долгожительства.
По общему вылову рыбы и по потреблению рыбы в ежедневной диете населения Япония до 1983 г. занимала первое место в мире. Каждый японец съедал в год около 70 кг рыбных продуктов, что составляло 6,3% общего баланса калорий. К этому уровню в Европе близко подходила лишь Исландия (6,0%), которая в 1984 г. оказалась на втором месте по ожидаемой продолжительности жизни мужчин и женщин. В Норвегии и Швеции, где наиболее развита рыболовная отрасль, доля рыбных калорий в диете была несколько ниже – 3,5 и 2,2%.
Уникальными в рыбных продуктах являются не белки, а жиры. В теле рыб жиры осуществляют несколько дополнительных функций, например выравнивают удельный вес тела и воды. В жирах рыб значительно больше жидких полиненасыщенных жирных кислот, чем в жирах теплокровных животных. При низкой температуре воды у холоднокровных рыб только жидкие жиры могут обеспечивать физиологические функции. Насыщенные твердые жиры, характерные для млекопитающих, подвергались бы кристаллизации в холодных северных водах. У рыб увеличено содержание альфа-линоленовой жирной кислоты (18:3), которая важна для функций нейронов и для образования гормонов из группы простагландинов.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.