Питер Бернстайн - Против богов: Укрощение риска Страница 18
Питер Бернстайн - Против богов: Укрощение риска читать онлайн бесплатно
Из примера следует еще кое-что. Зачем ваша команда будет играть все шесть оставшихся игр в последовательности, в которой она может победить досрочно? Или зачем соперники будут играть все четыре игры, если они могут выиграть в трех и этого им будет достаточно для победы?
Хотя на деле ни одна команда не станет продолжать игру после достижения необходимого для определения чемпиона числа выигрышей, логически законченное решение проблемы было бы неосуществимо без рассмотрения всех математических возможностей. Как заметил Паскаль в переписке с Ферма, в ходе решения задачи математические законы должны доминировать над желанием самих игроков, рассматриваемых только как абстракции. Он поясняет, что «для них обоих абсолютно безразлично и несущественно, будет ли [игра] на деле идти до самого конца».
***Переписка была для Паскаля и Ферма восхитительным опытом исследования новых интеллектуальных пространств. Ферма писал Каркави о Паскале: «Я уверен, что он способен решить любую проблему, за которую возьмется». В одном из писем к Ферма Паскаль признаётся: «Ваши числовые построения... превосходят мое понимание». В другом месте он характеризует Ферма как «человека такого выдающегося интеллекта... и такого высочайшего мастерства... [что его работы] сделают его первым среди геометров Европы».
У рассматриваемой задачи были аспекты, которые и Паскаля, глубоко погруженного в религиозные и моральные искания, и юриста Ферма беспокоили больше, чем связанные с ней математические проблемы. Согласно полученному ими решению, раздел банка в неоконченной игре в balla затрагивает проблемы морального права. Хотя игроки могли бы сразу поделить банк поровну, это решение Паскалю и Ферма кажется неприемлемым, потому что оно было бы несправедливым по отношению к игроку, который к моменту прекращения игры оказывается впереди[16].
Паскаль явно озабочен моральными аспектами проблемы и осторожен в словах. В своих комментариях к этой работе он отмечает:
«...в первую очередь следует признать, что деньги, поставленные игроками на кон, им больше не принадлежат... но взамен они получают право ожидать того, что им принесет удача в соответствии с правилами, на которые они согласились вначале». Если они решат остановить игру, не доведя ее до конца, им придется вновь восстановить исходные права на внесенные в банк деньги. Тогда «должно действовать правило, согласно которому деньги нужно распределить пропорционально тому, что каждому обещала удача. <...> Это справедливое распределение известно как раздел».
Справедливые пропорции раздела определяют принципы теории вероятностей.
С учетом этого подхода становится очевидным, что решение Паскаля-Ферма ярко окрашено идеей управления риском, хотя они явно не использовали это понятие. Только безумец идет на риск, если правила не определены, будь то balla, покупка акций IBM, строительство фабрики или согласие на удаление аппендикса.
Но помимо моральных проблем, предложенное Паскалем и Ферма решение приводит к точным обобщениям и правилам вычисления вероятностей, включая случаи участия более чем двух игроков, двух команд, двух полов, двух костей или монет с орлом и решкой. Применение этого подхода позволило им расширить границы теоретического анализа далеко за пределы наблюдений Кардано, что две кости с шестью гранями (или два броска одной кости) дадут 62 комбинаций, а один бросок трех костей дает 63 комбинаций.
Последнее письмо в переписке Паскаля и Ферма датировано 27 октября 1654 года. Меньше чем через месяц Паскаль прошел через своего рода мистический опыт. Он зашил описание этого события в свое платье, чтобы носить его у сердца, провозгласив: «Отречение, абсолютное и сладостное». Он отказался от занятий математикой и физикой, отрекся от роскоши, покинул старых друзей, продал всё, кроме религиозных книг, и вскоре ушел в парижский монастырь Пор-Рояль.
В июле 1660 года Паскаль совершил поездку в Клермон-Ферран, недалеко от жилища Ферма в Тулузе. Ферма предложил встретиться, чтобы «обняться и побеседовать пару дней», на полпути между двумя городами; он жаловался на плохое здоровье, объясняя нежелание взять на себя труд проехать все расстояние самому. В августе Паскаль в ответ написал:
«Я едва помню, что существует такая вещь, как геометрия [т. е. математика. — П. Б.]. Я почитаю геометрию столь бесполезной, что не могу усмотреть разницу между геометром и хорошим ремесленником. Хотя я считаю ее лучшим в мире ремеслом, это все же не более чем ремесло... Весьма вероятно, что я никогда больше не буду думать об этом»[17]
***Во время пребывания в Пор-Рояле Паскаль собрал воедино свои мысли о жизни и религии и опубликовал их в книге, озаглавленной «Pensees» («Мысли»)[18]. Во время работы над этой книгой он заполнил с обеих сторон два листа бумаги, по словам Хакинга «написанные разбегающимся во все стороны почерком... полные подчисток, исправлений, производящие впечатление запоздалых раздумий». Этот фрагмент приобрел известность как пари Паскаля (le pari de Pascal). Здесь он задается вопросом: «Есть Бог или нет Бога? К чему нам склониться? Разум молчит».
Опираясь на свой анализ вероятных исходов игры в balla, Паскаль ставит вопрос в терминах случайных игр. Он постулирует игру, которая продолжается до бесконечности. В данный момент бросается монета. На что вы поставите — на орла (Бог есть) или решку (Бога нет)?
Хакинг утверждает, что ход рассуждений Паскаля в предложенном им варианте ответа на этот вопрос представляет собой начало теории принятия решений. «Теория принятия решений, — рассуждает Хакинг, — это теория о том, на что решиться, когда неизвестно, что произойдет»[19]. Принятие такого решения является первым и важнейшим шагом при любых попытках управлять риском.
Иногда мы принимаем решения на основе прошлого опыта, тех экспериментов, которые мы или другие проводили в течение жизни. Но нам недоступен эксперимент, способный доказать бытие или небытие Бога. Зато в наших силах исследовать будущие последствия веры или неверия в Бога. Мы никогда не сможем избавиться от этой дилеммы, потому что самим актом своего существования принуждены играть в эту игру.
Паскаль объясняет, что вера в Бога — это не решение. Вы не можете проснуться утром и сказать: «Сегодня, кажется, я решу верить в Бога». Вы верите или не верите. Решением, следовательно, является выбор или отказ от таких действий, которые будут вести к вере в Бога, подобно общению с благочестивыми людьми и следованию жизни «святой и праведной». Следующий этим предписаниям ставит на то, что Бог есть. Тот, кто не может смириться с ними, ставит на то, что Бога нет.
Единственный способ выбрать между ставкой на то, что Бог есть, и ставкой на то, что Он не существует, в этой описанной Паскалем бесконечной игре с бросанием монеты заключается в принятии решения, является ли исход, при котором Бог существует, в некотором смысле более предпочтительным, чем исход, в соответствии с которым Бог не существует, даже если шансы могут быть только 50 на 50. Как раз этот взгляд привел Паскаля к решению — к выбору, в котором ценность исхода и вероятность того, что он будет иметь место, различаются, потому что последствия обоих исходов различны. {3}
Если Бога нет, не важно, ведем мы праведную жизнь или грешим. Но предположим, что Бог есть. Тогда, поставив против Его существования и отказавшись от праведной жизни, вы рискуете быть обреченным на вечные муки; поставив же на существование Бога, вы приобретаете возможность спасения, если Он есть. Поскольку спасение, естественно, предпочтительнее вечных мук, правильным следует признать решение исходить в своем поведении из предположения, что Бог есть. «К чему нам склониться?» Для Паскаля ответ был очевиден.
***Когда Паскаль решил пустить в оборот прибыль от принадлежавшей ему омнибусной линии, чтобы оказать финансовую помощь монастырю Пор-Рояль, он получил интересный побочный продукт[20]. В 1662 году группа его сотоварищей по монастырю опубликовала работу большой важности, «La logique, ou l'art de penser» («Логика, или Искусство мыслить»), которая между 1662-м и 1668 годами выдержала пять изданий {4}. Хотя имя ее автора не было названо, основным — но не единственным — автором считается Антуан Арно, которого Хакинг полагает, «по-видимому, самым блестящим теологом своего времени»[21]. Книга была немедленно переведена на другие европейские языки и еще в XIX столетии использовалась в качестве учебника.
В последней части книги есть четыре главы о вероятности, которые касаются процесса развития гипотезы, основанной на ограниченном наборе фактов; сегодня этот процесс называют статистическим выводом. Среди прочего в этих главах излагаются «правило должного применения разума в определении ситуаций, когда следует подчиниться авторитету других», правила истолкования чудес, основа для истолкования исторических событий и рассказывается о применении количественных измерений вероятности[22].
Жалоба
Напишите нам, и мы в срочном порядке примем меры.