Компьютерра - Журнал «Компьютерра» № 6 от 13 февраля 2007 года Страница 12

Тут можно читать бесплатно Компьютерра - Журнал «Компьютерра» № 6 от 13 февраля 2007 года. Жанр: Компьютеры и Интернет / Прочая околокомпьтерная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Компьютерра - Журнал «Компьютерра» № 6 от 13 февраля 2007 года читать онлайн бесплатно

Компьютерра - Журнал «Компьютерра» № 6 от 13 февраля 2007 года - читать книгу онлайн бесплатно, автор Компьютерра

А выработка электроэнергии? Электричества нам нужно будет очень много — если дефицит топлива вынудит нас отказаться от привычных систем отопления, бытового и промышленного нагрева… Системы доставки электроэнергии к потребителям придётся совершенствовать или вообще менять — нынешние не рассчитаны на такие нагрузки, которые потребуются. Нужно будет усовершенствовать теплогенерирующие устройства, постараться сделать их хоть немного более эффективными, чем существующие сегодня. Освещение переводить на полупроводники… Придётся закрывать обычные электростанции и котельные и, может быть, переводить их на синтетическое топливо, но в это мне не очень верится, так как запасы органики в городах хоть и велики, но рассеяны по большим площадям, так что их сбор и доставка к местам переработки может оказаться дорогостоящей затеей. Похоже, только ядерная энергетика сумеет нас выручить. Но при условии решения всех проблем с безопасностью.

Эти проблемы решаемы?

Конечно, решаемы. Как и вообще все технологические проблемы. Но важны сроки. Тут ведь действительно вопрос стоит — «кто успеет раньше». Если топливный кризис наступит, когда мы к нему окажемся не готовы — коллапс экономики. Мировой экономики! Огромные социальные потрясения и, как следствие, большие политические проблемы практически во всех странах… Здесь возможны очень неприятные сценарии. Не говоря уже о том, что в этих условиях нормально заниматься наукой и техникой вряд ли получится, а это откат назад, регресс.

Сроки — это очень важно. Очень много и быстро нужно сделать в части технологии. Срочно потребуется много научных исследований. На всё это нужны большие — государственных масштабов — денежные затраты, следовательно — государственная политическая воля. Ни денег, ни политической воли, направленной хотя бы на постановку этих задач на должном — государственном — уровне, ни у кого пока нет. Ни на Западе, ни у вас. Это тревожит.

Важная проблема — качество инженерной подготовки специалистов-разработчиков и пользователей технологий, особенно — опасных технологий. Дело в том, что нынешняя энергетическая и транспортная техника, при всём своём кажущемся совершенстве, тем не менее довольно груба и примитивна в сравнении с той, какая должна быть создана. То есть от инженеров вскоре потребуются более глубокие знания и более тонкое понимание физических процессов, чем те, которыми они обладают сегодня. Если вообще обладают… Падение качества массовой инженерной подготовки и у вас, и в Европе — это большая проблема, на решение которой уйдёт много времени. Но так или иначе, успех «электрификации всей Земли» [Подросток Отто Вайнбергер учился в советской школе, потом в советском институте и, конечно же, помнит чеканную Ленинскую формулировку: «Коммунизм — это Советская власть плюс электрификация всей страны»] зависит от практического умения инженеров находить эффективные технические решения.

СТАТИСТИКА

Ветростанции — это несерьёзно. И, кстати сказать, наземные гелиостанции — тоже. Это как у людей — есть основной источник дохода, и есть приработок. Ветростанции — это приработок.

Использование тепла недр Земли — куда более перспективная затея. Трудностей технического плана здесь множество, но принципиально неразрешимых нет. Правда, необходимы очень большие вложения в проектирование проходческой техники для глубин порядка 15—20 км и скважинного технологического оборудования, способного работать при температуре 250—350 градусов. По некоторым оценкам, при одинаковых затратах на строительство атомная станция оказывается примерно в триста раз мощнее, чем соответствующая геотермальная. Но не стоит забывать, что в первом случае имеет место большой экологический риск, а во втором — отпадает необходимость во всей промышленной инфраструктуре добычи и подготовки ядерного топлива, его переработки и захоронения, а также во всех сопутствующих транспортных затратах — а это не просто большие деньги, — колоссальные! Так что экономические показатели геотермальной энергетики могут оказаться весьма неплохими. Здесь требуются очень аккуратные расчёты, учитывающие множество факторов-от околоземные гелиостанции — это совсем другое дело. Главная трудность — доставка на землю выработанной энергии. Есть неплохие идеи использовать для этого микроволновые передатчики, но, во-первых, аппаратуры с подходящими параметрами в «космическом исполнении» пока никто не разработал, а во-вторых, здесь есть проблемы с надёжностью и безопасностью эксплуатации канала передачи мощности. Никому же не хочется в один прекрасный момент из-за сбоя системы прицеливания оказаться как бы в «микроволновке». В общем, идея интересная, но в её скорую реализацию не верю. Во всяком случае, не этой технологии «повезёт» выводить человечество из энергетического кризиса.

Есть ещё термоядерная технология…

Ну, я бы сказал, что пока её нет… Посмотрите, что получается — решение этой задачи оказалось не под силу ни одной из самых экономически сильных стран. Хорошо, что объединились в международный проект [Имеется в виде проект ITER]. Работы ведутся, тратятся колоссальные деньги, а практический выход в виде одной-двух промышленно вырабатывающих электричество термоядерных станций нам обещают только через 60—70 лет. Но даже в эти обещания я не верю. В эксперименте стабильно и длительно работающий термоядерный реактор не запущен, тем не менее сомнений в его будущей работоспособности в рамках принятой технологии уже не принято высказывать — вероятно, настолько велики потраченные деньги, что даже мысль о неудаче не допускается. Впрочем, я стараюсь быть оптимистом. Термоядерная энергетика, как мне представляется, рано или поздно все же будет освоена и придёт на смену атомной. Но подозреваю, что экономические показатели её не будут столь радужными, как преподносится в сегодняшних публикациях. Очень высокая стоимость оборудования, огромные затраты на его разработку… Большая проблема с кадрами… Не все понятно с экономикой топливного цикла… Когда говорят, что в литре воды находится столько же энергии, как в 200 литрах бензина, не предполагается же, что в термоядерный реактор мы будем заливать воду… И главное, что не все проблемы ближайшего будущего связаны только лишь с нехваткой электроэнергии и топлива.

Солнце, воздух и вода

Многие специалисты в области гелиоэнергетики склоняются к тому, что солнечные электростанции и теплогенерирующие установки «в чистом виде» не приживутся на просторах России из-за недостаточного количества солнечного времени в году — климат у нас сами знаете какой…

Использование энергии Солнца опосредовано — через гидроэнергетику — наталкивается на серьёзную трудность: ресурсы гидроэнергии России хоть и велики [Журнал обзоров мировой гидроэнергетики «Hydropower& DAMS» называет Таджикистан владельцем самых больших в мире удельных запасов гидроэнергоресурсов. По абсолютной величине это 300 млрд. кВт/час в год], но для дальнейшего наращивания мощностей потребуется решить множество непростых экологических задач, связанных с последствиями затопления территорий перед плотинами, и вложить значительные деньги в строительство дамб, обводных каналов, шлюзовых каскадов. Себестоимость отечественной гидроэнергии невелика (порядка 0,0022—0,003 доллара за киловатт — это значительно ниже мировых цен), что обеспечивает приемлемые сроки окупаемости, но первоначальные вложения в условиях равнинных ГЭС велики — в диапазоне от 0,8 до 4 млрд. долларов [На эти деньги можно построить два энергоблока АЭС. Ещё пример: стоимость первой термоядерной станции по международному проекту ITER в разных источниках определяется в 10—12 млрд. долларов].

Другой способ опосредованного использования энергии Солнца — это ветроэнергетика. В области её практического внедрения лидируют Германия и Испания. Ежегодно в этих странах вводятся в эксплуатацию ветростанций на 5—6 млн. кВт. Генераторы для таких станций серийно выпускают фирмы США, Бельгии, Голландии. На Украине, Южным машиностроительным заводом — всемирно известным производителем стратегических ракет — освоен выпуск модулей ветроэлектростанций, включающих в себя генератор мощностью 250 кВт., стеклопластиковый пропеллер и башню, изготовленные по той же технологии, что и стеклопластиковые корпуса твердотопливных двигателей ракет СС-24. Запуск одного (!) удельного киловатта мощности ветроэлектростанции (ВЭС) обходится более чем в тысячу долларов. Себестоимость вырабатываемого этими агрегатами электричества составляет 0,05—0,08 доллара за киловатт, что, конечно же, очень дорого. Реальная эксплуатация Новоазовской ВЭС в период с 1998 по 2000 год показала: коэффициент использования установленной мощности не превышает 5%, что не даёт оснований надеяться на окупаемость вложений в обозримый отрезок времени.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.