Джеймс Гордон - Конструкции, или почему не ломаются вещи Страница 6
Джеймс Гордон - Конструкции, или почему не ломаются вещи читать онлайн бесплатно
Сила любого упругого тела находится в постоянном отношении с удлинением, поэтому если одна сила растягивает или изгибает его на определенную величину, то две силы будут изгибать его на две такие величины, три - на три и так далее. И это есть Правило, или Закон, Природы, в соответствии с которым и происходят все виды Восстанавливающего, или Упругого, движения.
Роберт ГукУже в 1676 г. Гук ясно понимал не только то, что сопротивление твердых тел силам веса или другим механическим нагрузкам создается посредством сил противодействия, но и то, что, во-первых, под механическим воздействием всякое твердое тело меняет свою форму, растягиваясь или сжимаясь, а во-вторых, именно это изменение формы и позволяет твердому телу создавать силу противодействия.
Когда мы на конец веревки подвешиваем кирпич, веревка удлиняется, и как раз это удлинение и позволяет веревке тянуть кирпич вверх и удерживать его от падения. Все материалы и конструкции, хотя и в очень различной степени, под действием нагрузки испытывают смещения (рис. 3).
Рис. 3. Все материалы и конструкции, хотя и в весьма различной степени, под действием нагрузки испытывают смещения. Теория упругости - это наука о соотношениях между нагрузками и перемещениями в твердых телах. Под действием веса обезьяны материал ветки растянут у ее верхней поверхности и сжат у нижней.
Важно осознать, что возникновение смещений в любой и каждой конструкции вследствие действия нагрузки является совершенно нормальным. Если эти смещения не слишком велики с точки зрения целей, которым служит конструкция, их возникновение - отнюдь не "дефект" в том или ином смысле, а важное свойство, без которого ни одна конструкция не могла бы работать. Теория упругости - это наука о соотношениях между силами и смещениями в материалах и конструкциях.
Хотя под действием веса или других механических сил все твердые тела в той или иной степени деформируются, величины смещений, которые встречаются на практике, могут изменяться в огромных пределах. Так, в растении, куске резины смещения, как правило, велики и их легко наблюдать, а в случаях, когда мы прикладываем обычные нагрузки к таким твердым веществам, как металл, бетон или кость, смещения на самом деле иногда оказываются очень малыми. Хотя такие перемещения часто бывают далеко за пределами возможностей невооруженного глаза, они существуют всегда и совершенно реальны, даже если для их измерения требуются специальные приборы. Если вы взберетесь на колокольню кафедрального собора, в результате добавления вашего веса он станет ниже, пусть на весьма малую величину, но действительно ниже. Каменная кладка на самом деле оказывается более гибкой, чем можно было бы предполагать. Вы можете убедиться в этом, посмотрев на четыре главные колонны, поддерживающие колокольню собора в Солсбери: все они заметно изогнуты (рис. 4).
Рис. 4. Каждая из четырех колонн, поддерживающих 120-метровую башню собора в Солсбери, заметно изогнута. Каменная кладка является намного более гибкой, чем обычно думают.
Далее Гук пришел к важной мысли, воспринять которую некоторым трудно даже сегодня. Он понял, что под действием нагрузки смещения, о которых мы говорили выше, возникают не только во всякой конструкции, но и в самом материале, из которого она сделана. Он "внутренне" растягивается или сжимается в каждой своей части в соответствующей пропорции вплоть до очень малых размеров - до молекулярных размеров, как мы знаем сегодня. Так, при деформации ветки или стальной пружины, например при сгибании их, атомы и молекулы, из которых состоит вещество, в зависимости от того, растянут или сжат материал как целое, должны отодвинуться друг от друга или, наоборот, приблизиться друг к другу.
Как мы также знаем сегодня, химические связи, соединяющие атомы один с другим и удерживающие таким образом вместе части твердого тела, являются очень прочными и жесткими. Так что, растягивая или сжимая материал как целое, мы "растягиваем" или "сжимаем" многие миллионы прочных химических связей. Но последние оказывают мощное сопротивление даже весьма малым деформациям, что и создает требуемые большие силы противодействия (рис. 5).
Рис. 5. Упрощенная модель межатомных связей в твердом теле при деформировании. а - исходное недеформированное состояние; б - при растяжении атомы удаляются друг от друга; в- при сжатии атомы сближаются.
Несмотря на то что Гук ничего не знал в деталях о химических связях и не очень-то многое знал об атомах и молекулах, он хорошо понимал, что в тонкой структуре вещества происходит нечто подобное, и вознамерился установить, в чем состоит природа макроскопической связи между силами и смещениями в твердых телах. Он проделал множество опытов с самыми разными, предметами из самых разных материалов различной геометрической формы. Здесь были и пружины, и куски проволоки, и балки. Последовательно подвешивая на них грузы и измеряя возникающие смещения, Гук показал, что в любой конструкции смещение обычно пропорционально нагрузке. Так, нагрузка в 100 кгс вызывает смещение, вдвое больше, чем нагрузка в 50 кгс, и т. д.
Кроме того, в пределах возможной для измерений Гука точности, которая не могла быть очень высокой, большинство твердых тел после снятия нагрузки, вызывавшей смещения, восстанавливало свою первоначальную форму. Многократно нагружая и разгружая такого типа конструкции, он установил, что после снятия нагрузок остаточных изменений их формы не происходит. Такое поведение называется упругим и является совершенно обычным. Слово "упругий" нередко ассоциируется с бельевой резинкой или изделиями из эластика, но в равной мере оно применимо и к стали, камню и кирпичу, к веществам биологического происхождения, таким, как дерево, кость или сухожилие. Именно в этом более широком смысле его обычно и употребляют инженеры. Между прочим, комариный писк порождает высокая упругость "пружинок", управляющих крылышками комара.
В то же время форма некоторых твердых и "почти твердых" тел, таких, как замазка, пластилин, полностью не восстанавливается, они остаются деформированными и после снятия нагрузки. Такое поведение называется пластическим. Этот термин относится не только к материалам вроде тех, которые идут на изготовление пепельниц, но также и к глине, к мягким металлам. Свойствами пластичности обладают, например, и сливочное масло, и овсяная каша, и патока. Многие из тех материалов, которые Гук считал "упругими", при более точных современных методах исследования таковыми не оказываются. но все же как широкое обобщение выводы Гука остаются справедливыми, именно они легли в основу современной теории упругости. Мысль о том, что большая часть материалов и конструкций - не только детали механизмов, мосты и здания, но также и деревья, животные, горы и скалы и "все сущее" вокруг - ведет себя подобно упругим пружинам, сегодня может показаться довольно простой и, возможно, вполне очевидной, однако, как видно из дневников Гука, такой прыжок по пути к истине стоил ему больших умственных усилий и многих сомнений. Возможно, это один из самых больших подвигов мысли в истории.
Обсудив свои идеи с сэром Кристофером Реном[3] в нескольких частных беседах, Гук в 1679 г. опубликовал результаты своих экспериментов. Статья называлась "Сила сопротивления, или упругость". Именно в ней впервые прозвучало знаменитое утверждение "ut tensio sic vis" - "каково растяжение, такова и сила". Вот уже триста лет этот прицип известен как закон Гука.
Как теория упругости застыла на месте
Но стать врагом Ньютона было роковым шагом:
ведь Ньютон был непримирим независимо от своей правоты.
"Роберт Гук" (Хайнеман, 1956) Маргарет ЭспинасЗакон Гука сослужил инженерам очень большую службу, хотя в той форме, в которой Гук выдвинул его первоначально, практической пользы от него было не так уж много. Гук фактически говорил о перемещениях законченной конструкции - пружины, моста или дерева, - когда к ней приложена нагрузка.
Если мы задумаемся на мгновение, то поймем, что величины смещений зависят от двух факторов - от размеpa и геометрической формы конструкции и от материала, из которого конструкция сделана. Материал от материала очень сильно отличается присущей ему жесткостью. Такие материалы, как резина или мягкие животные ткани, деформируются под действием столь малых сил, как нажатие пальцем. В то же время жесткость дерева, кости, камня, большинства металлов гораздо выше, и хотя абсолютно "твердых" материалов в природе не существует, некоторые твердые тела, подобные сапфиру н алмазу, являются весьма жесткими.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.