Александр Нейфах - Гены и развитие организма Страница 13

Тут можно читать бесплатно Александр Нейфах - Гены и развитие организма. Жанр: Научные и научно-популярные книги / Биология, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Александр Нейфах - Гены и развитие организма читать онлайн бесплатно

Александр Нейфах - Гены и развитие организма - читать книгу онлайн бесплатно, автор Александр Нейфах

Классическим объектом эмбриологии всегда считалась лягушка. Сейчас особенно широко используют африканскую шпорцевую лягушку — ксенопуса. Развитие экспериментальной эмбриологии рыб явно отстает и, как нам кажется, во многом из-за того, что не было найдено подходящего объекта.

Когда в нашей лаборатории были начаты первые эксперименты на зародышах вьюна, мы убедились в его необыкновенных достоинствах. Возможность получать и хранить этих неприхотливых рыб круглый год и круглый год получать от них икру, прозрачность ее оболочек, разработанный нами метод отделять зародыш от желтка и культивировать в солевой среде, наконец, возможность использовать таких зародышей для изотопных исследований — вот лишь краткий перечень достоинств вьюна как эмбриологического объекта. Поэтому вьюн сейчас широко используется в различных исследованиях в нашей стране и в странах Восточной Европы, т. е. в тех странах, где он обитает.

Если высокой дозой рентгеновской радиации (20 тыс. рад) инактивировать ядра яиц вьюна тотчас после оплодотворения, то развитие, как мы уже знаем, пойдет внешне нормально только до стадии поздней бластулы, на которой оно остановится. У вьюна при температуре 21 °C стадия поздней бластулы наступает через 9 ч после оплодотворения, и эту стадию удобно так и называть — «стадия 9 часов», всегда имея в виду температуру 21 °C. Если инактивацию ядер произвести через 1 или через 2 ч после оплодотворения, все произойдет точно так же: развитие блокируется на стадии 9 часов, т. е. на поздней бластуле. Это наступит соответственно через 8 или через 7 ч после инактивации ядер. Даже если мы облучим зародышей уже на стадии ранней или средней бластулы, т. е. после 4 или 6 ч нормального развития, остановка все равно произойдет на стадии 9 часов, т. е. через 5 или через 3 ч после облучения. Это означает, что запас белков и мРНК, синтезированных в оогенезе вьюна, достаточен на первые 9 ч развития и этот запас не возрастает за первые шесть часов, а как бы постепенно тратится. Имел ли зародыш неповрежденные ядра только 1 или все первые 6 ч развития, никакой роли не играет: результат будет все тот же — остановка на стадии 9 часов.

Результат этих опытов может быть истолкован только одним образом: в первые 6 ч развития ядра зародыша не осуществляют морфогенетической функции. В это время они активно делятся и соответственно в них синтезируется ДНК. В них в принципе могло бы даже синтезироваться немного РНК, но такие ее виды, которые морфогенеза (конкретно гаструляции) не определяют.

Иной результат получается, если зародыш облучить рентгеновской радиацией и инактивировать в нем ядра в конце стадии средней бластулы, через семь часов после начала развития. Такие зародыши явно начинают гаструляцию и останавливаются на стадии ранней гаструлы, приблизительно эквивалентной 12–13 ч развития. Инактивация ядер через 8 ч после оплодотворения блокирует развитие на еще более поздней стадии —16–17 ч, когда гаструляция близка к завершению. Наконец, действие радиации на стадии 9 часов останавливает развитие уже после завершения гаструляции. Следовательно, позволив ядрам работать в течение всего 3 ч (от 6 до 9 ч), мы как бы предопределили последующее развитие на 8–9 ч вперед.

Эти опыты показали, что морфогенетическая функция ядер начинает осуществляться со стадии средней бластулы или, точнее, через 6 ч после оплодотворения. Это на 3 ч раньше, чем ее первое проявление (поздняя бластула — 9 ч). Все другие методы, о которых речь шла выше, действительно не позволяли судить о начале работы генов.

Точнее всего определить момент начала ядерной активности можно по начавшемуся синтезу РНК. Этот метод не только дает возможность установить, на какой стадии включаются гены зародыша, но и позволяет узнать, какие именно РНК образуются — рРНК, тРНК или мРНК. Более того, в некоторых случаях мы можем сказать, входят ли в состав вновь синтезированных мРНК интересующие нас индивидуальные мРНК, например гистоновые, т. е. мы можем узнать, какие гены начали работать. Однако нам неизвестно, какие мРНК кодируют белки, определяющие морфогенез. Поэтому судить о начале работы генов, определяющих морфогенез, мы можем пока только при помощи метода инактивации ядер на последовательных стадиях развития.

3. Включение индивидуальных генов

Когда мы до сих пор говорили о начале функционирования ядер, или, конкретно, о начале синтеза РНК, речь, естественно, шла об одновременном включении сотен, если не тысяч генов, — включение одного или десяти генов мы просто бы не заметили. По-видимому, в раннем развитии существует общий механизм, включающий одновременно транскрипцию сразу в очень многих точках хромосом. Однако должна существовать и другая регуляция, определяющая, почему в число этих тысяч генов попал именно данный ген, а не соседний. По другой развиваемой сейчас гипотезе, которую мы подробно обсудим в одной из последующих глав, включаются и работают, может быть, почти все гены, но некоторые из них транскрибируются намного интенсивнее, и, помимо этого, процессинг затрагивает только нужные про-мРНК, а остальные разрушаются и даже не выходят из ядра. Пока же мы будем обсуждать эту проблему в «классических» представлениях о включении и выключении генов.

Включение отдельных (индивидуальных) генов происходит не только в раннем развитии, но и на всем протяжении клеточной дифференцировки. Этот процесс является одной из главных проблем и для молекулярной биологии, и для биологии развития. Хорошей моделью для его исследования может служить включение в эмбриональном развитии отдельных генов, кодирующих тот или иной фермент, о чем мы можем судить по появлению самого фермента.

Если этот фермент впервые появляется в развитии зародыша, то его появление, как правило, происходит лишь немногим позже включения соответствующего гена. Так, например, перед началом движений зародыша в нем начинается синтез холинэстеразы — фермента, важного для передачи на мышцу нервного импульса. До начала движений зародыша этого фермента почти нет. При дифференцировке поджелудочной железы в ней появляются отсутствующие до этого пищеварительные ферменты. У зародышей змей еще в яйце формируются ядовитые железы и в них начинают накапливаться особые ферменты змеиного ядра. В свежеотложенном яйце их, естественно, не было.

Хотя конкретные механизмы включения таких генов неизвестны, сам факт их включения на той, а не на другой стадии кажется достаточно понятным. Дифференцировка, например, поджелудочной железы на генетическом уровне и состоит в последовательном включении генов, сначала определяющих формообразование железы, а затем синтез в ней пищеварительных ферментов. В этом смысле менее понятно, а потому более интересно включение генов для тех ферментов, которые присутствуют во всех клетках и на всех стадиях развития.

Действительно, в каждой клетке имеется относительно немного видов особенных ферментов, характерных только для данного типа клеток. Известный биолог Эфрусси назвал такие белки белками «роскоши», имея в виду, что сама клетка могла бы без этих белков и обойтись. Ho вместе с тем в клетках присутствует большое количество (порядка тысячи) ферментов, необходимых всем видам клеток. Это так называемые «хаус-кипинг»-ферменты, т. е. ферменты «домашнего хозяйства». Они определяют и контролируют такие общеклеточные процессы, как дыхание и вообще энергетический обмен, проницаемость клеточных мембран, синтез белка и нуклеиновых кислот, образование различных биологически важных веществ и т. д. Естественно, что все эти «хаус-кипинг»-ферменты действуют и накапливаются в ооците, имеются в яйце и во всех клетках зародыша, присутствуют в тканях взрослого организма. Их концентрация и количественные соотношения могут меняться в зависимости от стадии развития и вида ткани, хотя в ходе раннего эмбриогенеза многие из них поддерживаются на довольно постоянном уровне.

Время жизни каждого вида фермента различно и варьирует от десятков минут до нескольких дней. Поэтому они должны почти все время синтезироваться для того, чтобы в клетке поддерживалось постоянное количество ферментных молекул. Для этого в клетке должны постоянно присутствовать мРНК для этих ферментов, а так как срок жизни мРНК также ограничен, то должны работать гены, пополняющие их количество.

Эта равновесная ситуация (транскрипция и распад мРНК, трансляция и распад ферментных белков) нарушается в яйце и в самом раннем эмбриональном развитии, когда работа генов прерывается, а зародыш содержит накопленный в оогенезе запас самих ферментных белков, а также мРНК для синтеза этих белков. Очевидно, что и эти ферменты и мРНК такие же, как в материнском организме, — ведь они были созданы благодаря активности генов ооцита. Неизвестно, содержатся ли в яйце мРНК для всех видов белков, присутствующих в яйце. Поэтому то или иное время эмбриональные клетки живут за счет накопленного фермента, причем его убыль может некоторое время пополняться благодаря трансляции на запасенной мРНК. Ho в какой-то момент развития должны включиться собственные гены зародыша (на отцовской и материнской хромосомах) и появиться новосинтезированные мРНК, а на них должен начать транслироваться новый (точно такой же или аналогичный) фермент зародыша, который постепенно вытесняет чисто материнский фермент.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.