Владимир Скулачев - Рассказы о биоэнергетике Страница 14

Тут можно читать бесплатно Владимир Скулачев - Рассказы о биоэнергетике. Жанр: Научные и научно-популярные книги / Биология, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Владимир Скулачев - Рассказы о биоэнергетике читать онлайн бесплатно

Владимир Скулачев - Рассказы о биоэнергетике - читать книгу онлайн бесплатно, автор Владимир Скулачев

Митчелу нечего было возразить, но в душе он уже уверовал в свою правоту. Я помню его доклад в 1968 году на очередном европейском биохимическом съезде в Праге. Ученый вышел на трибуну в помятом дорожном пиджаке и принялся расхаживать, мягко ступая по сцене, победоносно поглядывая поверх стекол очков своими желтыми, немного кошачьими глазами. Время от времени он подходил к доске и, склонив набок крупную голову, рисовал по памяти графики опытов. Ему не смогла испортить настроение даже пропажа чемодана со всеми слайдами и парадным костюмом.

В кулуарах следом за Митчелом ходил пожилой, небольшого роста англичанин и поспешно записывал все его высказывания в дискуссиях, которые немедленно вспыхивали в компании биоэнергетиков, как только среди них появлялся вчерашний затворник из Бодмина. Меня заинтриговала эта фигура, слишком уж не соответствовавшая своей, по-видимому, секретарской роли.

— Кто это преследует Митчела? - спросил я у одного из своих английских коллег.

— Да это Гревил. Ему заказали обзор о гипотезе Митчела для одного из журналов, вот он и собирает материал!

А что же Чане? Чане, считавший своим долгом задать вопрос любому докладчику, чье выступление он удостоил своим присутствием, на сей раз хранил необычное молчание, как будто все происходящее его вовсе не касалось. Может быть, капитан спустил паруса, заметив неблагоприятное для себя направление ветра?

Тем временем Митчел пишет вторую «Серую книгу» и вновь издает ее на свой страх и риск. Потом ее публикуют полностью в международном журнале по биофизике в виде одной огромной статьи. Молодой американский биоэнергетик П. Хинкль, вскоре после этого приехавший к Митчелу поработать, говорил мне, что он никогда не видел такого счастливого человека, как Митчел, и такой счастливой семьи, как обитатели Глинн Хауза.

Конформационная гипотеза

Тем не менее борьба еще не окончена, и не только из-за калиевой АТФазы. Появляется на свет божий новая, так называемая конформационная гипотеза сопряжения. Она пытается избавиться от наиболее вопиющих недостатков химической схемы, не прибегая к протонному потенциалу. Автор конформационной концепции, американский биохимик П. Бойер, сразу же отказался от аналогий с брожением. Он не признавал мифических промежуточных продуктов вроде фосфорилированных ферментов дыхания. Предполагалось вместо этого, что перенос электронов дыхательным ферментом создает некую «напряженную конформацию», то есть сжимает молекулу фермента как пружину. Затем «конформационная энергия» передается АТФ-синтетазе, образующей прочный комплекс с дыхательным ферментом. Релаксация (расслабление) напряженной АТФ-синтетазы ведет к синтезу АТФ.

Напряженная конформация, расслабление... Это все было взято из энергетики мышечного сокращения. Если химическая схема уподобляла систему дыхательного фосфорилирования брожению, то конформационная брала в основу биохимию белков мышц, которыми долгие годы занимался Бойер.

Две концепции — калиевой АТФазы и конформационного сопряжения — были противопоставлены хемиосмотической гипотезе на рубеже 60—70-х годов. Вокруг этих концепций дружно сплотились бывшие сторонники химической схемы, чтобы противостоять протондвижущей силе. Тогда их было еще большинство. Но с каждым годом увеличивалось число сторонников Митчела, множились красные флажки на карте в Глинн Хаузе.

Ягендорф, Витт, Булычев и другие

Корнелльский университет в Итаке (штат Нью-Йорк), как мне объяснили по приезде в этот симпатичный городок на севере США, специализируется в подготовке ветеринаров и управляющих отелями. Не знаю уж, кому из них более интересен фотосинтез: ветеринарам, чьи подопечные нагуливают вес, поедая продукты фотосинтеза, или управляющим отелями, которым приходится следить, помимо прочего, за пальмами в гостиничных холлах.

Так или иначе в Корнелльском университете работал А. Ягендорф, специалист по фотофосфорилированию, то есть синтезу АТФ за счет энергии света в хлоропластах. До этого он провел некоторое время в лаборатории Митчела и, вернувшись в Итаку, решил проверить предсказательную силу новой гипотезы. Ягендорф поместил хлоропласты сначала в кислую, а потом в щелочную среду, измеряя при этом количество АТФ. Все манипуляции производились в темноте. Оказалось, что такая процедура ведет к образованию АТФ, как если бы мы на минутку выключили свет.

Система фотофосфорилирования работает без света. Удивительно?

А почему бы и нет, если, по Митчелу, свет нужен для синтеза АТФ только затем, чтобы разделить Н+ и ОН- и образовать разность электрических потенциалов между внутренним пространством хлоропласта и окружающим раствором. Перенеся хлоропласты из кислой среды в щелочную, мы, так сказать, своими руками создаем необходимую разность концентраций водородных ионов, которая будет поддерживать какое-то время синтез АТФ без всякого света.

Городу Итаке красный флажок!

Университет в Западном Берлине. Лаборатория профессора X. Витта. Исследуется электрохромный эффект Штарка: способность некоторых красителей менять свой спектр при помещении в сильное электрическое поле. Оказывается, пленки, приготовленные из смеси пигментов, содержащихся в хлоропластах, демонстрируют этот эффект. Интересно, конечно, но какое он имеет отношение к делу?

Самое прямое. Освещение хлоропластов вызывает спектральный сдвиг, подобный эффекту Штарка. Так, может быть, свет создает электрическое поле на хлоро-пластной мембране, где как раз и находятся исследованные Виттом пигменты? Тщательный анализ свидетельствует в пользу этого предположения.

Еще один флажок на карте...

А. Булычев, В. Андрианов, Г. Курелла и Ф. Литвин, сотрудники биофака МГУ, ставят опыты на растениях с очень крупными хлоропластами. В один из хлоропластов удается ввести микроэлектрод. Выясняется, что освещение вызывает образование разности потенциалов между хлоропластом и цитоплазмой клетки, куда введен другой электрод.

Рука Митчела тянется к красному флажку. Напрасно. Над Москвой красный флажок уже есть.

Но не думайте, что в Москве все шло так уж гладко. Когда я впервые рассказывал о хемиосмотической гипотезе на одной из всесоюзных конференций, то председательствующий быстро погасил мой пыл. Гипотеза, как было сказано, напомнила ему 20-е годы, когда все химические события в организме объясняли изменением баланса «кислых и щелочных едкостей». Шутка имела большой успех у аудитории.

На Международном ботаническом конгрессе, проходившем в нашей стране, физик Д. Чернавский выступил с заявлением о совершенной невозможности существования хемиосмотического механизма из сугубо теоретических соображений. Он говорил по-русски, а переводчика не было, так что один мой знакомый англичанин из всего выступления Чернавского понял только одно слово «Митчел», повторявшееся множество раз.

— Как все же у вас поддерживают Митчела! — сказал мне потом англичанин.

«Чудо-ионы»

После опытов с протонофорами мы взялись за проверку следующего постулата хемиосмотической гипотезы, а именно ее, так сказать «электрической части».

Митохондрия или хлоропласт - сложная штука, целое натуральное хозяйство внутри клетки, Может быть, когда-то это была самостоятельная клетка микроба, вступившего на путь симбиоза с более крупным хозяином. В митохондриях и хлоропластах есть множество ферментов, в том числе неизученных. Может статься, что среди них скрывается и калиевая АТФаза. Поэтому далеко не безопасно мерить разность электрических потенциалов (Δψ), используя природные ионы типа калия, как это сделал Митчел. Лучше бы взять ион искусственный, синтетический, непохожий ни на кого из своих природных собратьев. Но будет ли чужеродный ион проникать через митохондриальную мембрану?

'Чюдо-ионы'

К сожалению, скорее всего нет. Чтобы удерживать образуемую дыханием Δψ, мембрана не должна пропускать ионы. Только очень узкий круг вполне определенных, «избранных» природных ионов имеет возможность пройти через мембрану митохондрий. Среди них ион кальция, который избирательно накапливается в митохондриях при участии особого переносчика, локализованного в митохондриальной мембране. Но ион кальция не годится по той же причине, что и калий (а вдруг в митохондриях есть кальциевая АТФаза, подобная, к примеру, той, которую обнаружили в некоторых других типах мембран).

Давайте подумаем, почему ионы не проходят через мембрану в отстутствие веществ-переносчиков или специальных ионных каналов?

Все природные мембраны сделаны из жиров и «жирных» белков, то есть полипептидных цепей с высоким содержанием гидрофобных аминокислот. Итак, мебрана жирная. Ионы же в водном растворе окружены связанными молекулами воды («водной шубой»), и их сродство к жиру крайне низко. Именно поэтому мебрана — барьер для ионов.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.