Ричард Докинз - Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной Страница 19
Ричард Докинз - Слепой часовщик. Как эволюция доказывает отсутствие замысла во Вселенной читать онлайн бесплатно
Развитие эмбриона — процесс слишком замысловатый, чтобы можно было реалистично сымитировать его на маленьком компьютере. Поэтому нужно придумать некий упрощенный аналог: найти такое простое правило вычерчивания рисунков, которому компьютер мог бы легко подчиняться и которое могло бы варьировать под влиянием “генов”. Какое же правило мы выберем? В учебниках по информатике часто демонстрируются возможности так называемого рекурсивного программирования на примере простого алгоритма роста деревьев. Компьютер начинает с того, что чертит одиночную вертикальную линию. Затем эта линия разветвляется на две. Затем каждая из получившихся ветвей разделяется на две ветви второго порядка. Затем каждая из этих новых ветвей разделяется на ветви третьего порядка и т. д. Такое программирование называется рекурсивным, потому что в каждой точке всего растущего дерева применяется одно и то же правило (в данном случае правило ветвления). Каким бы большим дерево ни вырастало, каждая его веточка разделяется снова и снова в соответствии все с тем же правилом.
“Глубиной” рекурсии называется такое число веточек n-го порядка, которому позволяется вырасти, прежде чем процесс будет остановлен. На рисунке 2 показано, что будет, если задать компьютеру один и тот же алгоритм черчения, но с разными значениями глубины рекурсии. При высоких степенях рекурсии получается довольно запутанный узор, однако, как ясно видно из рис. 2, достигается он за счет того же самого простейшего правила ветвления. Несомненно, это именно то, что происходит и у настоящих деревьев. Система ветвей дуба или яблони выглядит сложной, но в действительности таковой не является. Правило, лежащее в основе процесса ветвления, элементарно. Просто оно снова и снова применяется в каждой растущей верхушке каждой веточки: ветви дают начало ветвям второго порядка, каждая из которых, в свою очередь, ветвям третьего порядка и так далее. Вот почему все дерево становится в итоге большим и ветвистым.
Рекурсивная бифуркация является также хорошей метафорой эмбрионального развития как растений, так и животных. Я не хочу сказать, будто зародыши животных похожи на ветвящиеся деревья. Они на них не похожи. Но любой эмбрион растет благодаря делению клеток. Каждая клетка всегда делится на две дочерние. А гены в конечном счете всегда осуществляют свои воздействия на организм посредством локального влияния на клетки, которые раздваиваются и раздваиваются. Гены животного ни в коем случае не являются грандиозным чертежом, подробным планом строения целого организма. Как мы дальше увидим, они похожи скорее на рецепт, нежели на чертеж, и более того, на рецепт, которому следует не весь развивающийся зародыш, а каждая клетка или каждое небольшое скопление делящихся клеток. Я не отрицаю того, что любой эмбрион, а впоследствии и взрослая особь имеет некое целостное строение. Но возникает это крупномасштабное строение за счет множества мелких локальных воздействий на клеточном уровне, происходящих повсюду в развивающемся организме. И в первую очередь местные воздействия сказываются на удвоении клеток — то есть на некоей разновидности ветвления. Именно регулируя такие локальные события, гены в конечном итоге влияют и на строение взрослого организма.
Итак, простое правило ветвления выглядит как многообещающий аналог эмбрионального развития. Что ж, превращаем это правило в небольшой компьютерный алгоритм, которому даем название РАЗВИТИЕ, чтобы затем внедрить его в более масштабную программу ЭВОЛЮЦИЯ[2]. При работе над этой большой программой прежде всего следует задуматься о генах.
Рис. 2
Какого рода “гены” могут быть представлены в нашей компьютерной модели? В реальной жизни гены делают две вещи: влияют на индивидуальное развитие и передаются следующим поколениям. У настоящих животных и растений десятки тысяч разных генов, но мы в своей компьютерной имитации скромно ограничимся девятью. Каждый ген из этой девятки будет охарактеризован в компьютере просто неким числом, которое будет называться значением гена. Какой-то отдельно взятый ген может, к примеру, иметь значение 4 или –7.
Как же эти гены будут влиять на развитие? Ну, они могут делать это множеством разных способов. Главное, чтобы они вносили в алгоритм РАЗВИТИЕ какие-то небольшие изменения количественного характера. Например, один ген мог бы влиять на угол ветвления, а другой — на длину какой-нибудь из веточек. Еще одна возможная задача для генов, которая сразу же приходит в голову, — менять глубину рекурсии, число последовательных ветвлений. Ответственным за этот эффект я назначил ген номер 9. Таким образом, вы можете рассматривать рис. 2 как изображение семи близкородственных организмов, идентичных друг другу во всем, за исключением гена 9. Не буду вдаваться в подробности того, что именно делает каждый из восьми других генов. Представление о том, какого рода воздействия они производят, вы можете получить, изучив рис. 3. В центре расположено исходное дерево — одно из тех, что изображены на рис. 2. Вокруг него располагается еще восемь. Они точно такие же, как и то, которое в центре, но только у каждого из них был изменен — “мутировал” — какой-то из этих восьми генов. Например, картинка справа от центрального дерева показывает нам, что происходит, когда ген 5 мутирует и к его значению прибавляется 1. Будь на странице больше места, я бы расположил вокруг центрального дерева кольцо из 18 мутантов. Почему именно из 18? Потому что у нас есть девять генов, и каждый из них может мутировать в сторону как “повышения” (когда к его значению прибавляется 1), так и “понижения” (когда из его значения вычитается 1). Следовательно, 18 изображений хватило бы для того, чтобы показать всех мутантов, каких можно получить из одного центрального дерева путем единичного преобразования.
Рис. 3
У каждого из этих деревьев имеется своя собственная, уникальная “генетическая формула” — численные значения всех девяти генов. Я не стал выписывать эти генетические формулы здесь, так как сами по себе они ничего вам не скажут. Это же, кстати, справедливо и для настоящих генов. Гены начинают значить что-либо, только когда в ходе белкового синтеза преобразуются в предписания для развивающегося зародыша. То же и в нашей компьютерной модели: численные значения девяти генов обретают смысл, только будучи переведенными в указания по росту древовидного узора.
Но о работе каждого конкретного гена можно получить представление, сравнивая два организма, о которых известно, что они различаются только в этом гене. Сравните, например, исходное дерево в центре рисунка с теми, что расположены по обе стороны от него, и вы получите некоторое представление о том, что делает ген номер 5.
Ровно тем же самым занимаются и генетики в реальной жизни. Обычно генетики не знают, какими путями гены оказывают свое воздействие на эмбрионы. Не знают они и полной генетической формулы каждого животного. Но, сравнив два взрослых организма, различающиеся по одному-единственному гену, они могут увидеть, какое именно действие этот ген оказывает. На самом деле все несколько сложнее, поскольку эффекты генов взаимодействуют друг с другом способами более замысловатыми, чем простое сложение. Но то же самое верно и по отношению к компьютерным деревьям. Еще как верно, и на следующих рисунках мы это увидим.
Вы, вероятно, обратите внимание, что все формы, которые у нас получатся, будут двусторонне-симметричными. Это я установил такое ограничение для подпрограммы РАЗВИТИЕ — отчасти из эстетических соображений, отчасти чтобы уменьшить число необходимых генов (если бы гены не производили одно и то же зеркально отраженное действие на обе стороны вычерчиваемого дерева, нам понадобился бы отдельный набор генов для левой половины и отдельный — для правой), и еще отчасти потому, что надеялся получить картинки, напоминающие животных, а животные в большинстве своем довольно-таки симметричны. По этой же причине отныне я прекращаю называть эти создания “деревьями”, а буду говорить “организмы” или “биоморфы”. Название “биоморфа” придумал Десмонд Моррис — для существ, отдаленно напоминающих животных, с его сюрреалистических полотен. К его картинам я испытываю особенную привязанность, поскольку одна из них была воспроизведена на обложке моей первой книги. Моррис утверждает, что биоморфы “эволюционируют” в его воображении и что их эволюцию можно проследить по его картинам.
Но вернемся к нашим компьютерным биоморфам и к кругу из 18 возможных мутантов, восемь типичных представителей которых изображены на рис. 3. Поскольку каждый из них находится в одном-единственном мутационном шаге от исходной биоморфы, нам будет нетрудно рассматривать их всех как ее детей. Итак, у нас есть своего рода РАЗМНОЖЕНИЕ, которое, точно так же как и РАЗВИТИЕ, будет воплощено в простом компьютерном алгоритме — еще одном готовом “строительном блоке” для нашей большой программы ЭВОЛЮЦИЯ. Про РАЗМНОЖЕНИЕ следует сказать две вещи. Во-первых, никакого секса: размножение бесполое. Поэтому я полагаю, что биоморфы женского пола — ведь животные, размножающиеся без полового процесса (тли, например), почти всегда устроены как самки. Во-вторых, имеется ограничение для мутаций: всегда происходит только одна за раз. Выходит, что дочь отличается от своей родительницы только по одному из девяти генов. Более того, при каждой мутации к значению соответствующего родительского гена может быть добавлено только +1 или –1. Это не более чем произвольные условия, которые могли бы быть и иными без ущерба для биологического правдоподобия.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.