Флойд Блум - Мозг, разум и поведение Страница 23
Флойд Блум - Мозг, разум и поведение читать онлайн бесплатно
СЛУЧАЙНОЕ ОТКРЫТИЕ
К 1962 г. были разработаны методы регистрации электрической активности ганглиозных клеток сетчатки и клеток латерального коленчатного тела при воздействии стимулов на сетчатку. Работая с наркотизированными кошками, Дэвид Хьюбел и Торстен Визель начали изучать реакцию клеток первичной зрительной коры. Многие клетки слоя IV реагировали подобно клеткам сетчатки и латерального коленчатого тела, проявляя высокую активность, когда на их рецептивные поля падали небольшие пучки света. Однако нейроны, расположенные выше и ниже слоя IV, казалось, вовсе не реагировали на раздражитель до той поры, пока случайное наблюдение не помогло экспериментаторам разгадать их тайну. Предоставим слово Хьюбелу:
«Вначале вы никак не могли добиться разрядов в этих клетках. Мы проецировали пучки света по всему экрану, но это не помогло. И вот однажды, скорее по чистой случайности, мы стали создавать на экране небольшие пятна света и обнаружили, что „работает“ черная точка, но как — мы не могли понять до тех пор, пока не выяснили: виной всему кусок стекла, который мы вставляем в проектор. Он посылал на экран четкую и тонкую, едва заметную линию. Каждый раз, когда это происходило, мы получали ответ. Более того, ответ возникал только в том случае, если линия была ориентирована в определенном направлении, а не в каком-либо другом...»
После этого Хьюбел и Визель начали проверять реакцию клеток верхнего и нижнего слоев зрительной коры на изображения в виде линий, полосок или палочек. Было обнаружено, что эти клетки избирательно реагируют не только на само удлиненное изображение, но и на его ориентацию под определенным углом (см. рис. 49).
Рис. 50. Дэвид Хъюбел и Торстен Визель.
Рис. 51. Кошка в экспериментальном аппарате.
«Простые» клетки коры, подобно ганглиозным клеткам (или нейронам коленчатого тела), могут реагировать только на контраст между центром и окружающей областью. Ответная реакция «сложных» клеток избирательна в отношении таких особенностей, как ориентация, форма контура, перемещение и т. п. «Простые» клетки коры почти наверняка активируются сочетанием возбуждающих и тормозящих влияний, исходящих из соответствующих пунктов коленчатого тела. «Сложные» клетки, очевидно, могут извлекать дополнительную информацию о размерах, форме и движении сигналов.
Рис. 52. Изображения, которые мы встречаем в печати, целиком состоят из точек. При большом увеличении (слева) изображение нельзя «прочитать». При меньших увеличениях точки постепенно сливаются, и в конце концов возникает распознаваемый образ. Так же может происходить и поступление информации в зрительную систему.
Но как из взаимодействий между всеми этими нейронами рождаются те реальные, «телесные» образы, которые мы видим? Если вы взглянете на фотографию в газете через лупу, то обнаружите, что изображение состоит из точек. В темных местах эти точки крупнее и почти сливаются, в светлых — значительно мельче. Когда видишь эти детали сильно увеличенными, вряд ли поймешь, что изображено на картинке. Лишь тогда, когда вы смотрите невооруженным глазом, точки пропадают и появляется изображение. Упрощенно говоря, ответные реакции ганглиозных клеток сетчатки, активируемых ими клеток в коленчатом теле и «простых» клеток зрительной коры составляют систему распознавания точек мозгом (рис. 52).
Линии и прямые края — удобные примеры образов, распознаваемых «сложной» клеткой зрительной коры. Но то, что видят наши глаза, не сводится к этим образам. При более детальном исследовании оказывается, что «сложные» клетки поля 17 реагируют, по-видимому, чуть раньше простых клеток. Значит, мысль о том, что внутри кортикальной колонки информация от «простых» клеток как бы считывается «сложными», несмотря на свою привлекательность, пока не находит подтверждения. Может быть, более верным будет предположение, что нейроны — опознаватели точек в сетчатке и коленчатом теле — служат своего рода «фильтрами» для некоторых видов зрительных стимулов. Когда корковые нейроны получают отфильтрованные данные, мир может «выглядеть» как фото в газете, если смотреть на него с такого расстояния, когда точки уже начинают сливаться, но связное изображение еще не появилось. Линии и края в этом случае можно рассматривать как элементы изображения, контуры и другие особенности которых могут пройти сквозь сито первичных уровней переработки информации.
Два глаза — один мир
Можно описать многие аспекты того, как мы видим, но они еще не получили точного биологического объяснения. Возможно даже, что некоторые стороны этого процесса вообще еще не выявлены. Переработкой зрительной информации занята значительная часть нашего мозга, но насколько велика эта часть, ученые затрудняются сказать даже приблизительно.
Мы знаем, что у нас два глаза, но мы почти всегда видим только один внешний мир. Эта способность объединять информацию, идущую от обоих глаз, основана на двух важнейших свойствах зрительной системы.
Во-первых, движения наших глаз, когда мы осматриваем ими окружающее, сложным образом скоординированы. Если вы, глядя на острый край какого-нибудь предмета, легонько надавите сбоку на глазное яблоко, то в этот миг увидите оба изображения, из которых складывается одно. Для слияния изображений особенно важны нейроны верхних бугорков четверохолмия. Эти клетки лучше реагируют на движущиеся раздражители. Они тоже организованы в вертикальные колонки, клетки которых отвечают на сигналы, идущие из одних и тех же участков поля зрения. Оказалось, что клетки, расположенные в самом низу колонки, активируются непосредственно перед тем, как происходит спонтанное движение глаз. Их активность служит пусковым механизмом для глазодвигательных нейронов; последние вызывают сокращение соответствующих мышц, а те перемещают глаз таким образом, чтобы участок поля зрения, где что-то движется, проецировался на центральную ямку. Так, поворачивая вместе оба глаза, мы «обращаем свое внимание» туда, где блеснула вспышка света или что-то передвинулось, чтобы получше рассмотреть это «что-то».
Клетки, расположенные в глубоких слоях верхних бугорков, получают также слуховую информацию и реагируют на звук. Слуховая информация, объединяющаяся в этих клетках со зрительной, вызывает посылку сигналов на более низкий уровень — клеткам среднего мозга, управляющим мышцами глазного яблока. С помощью этих мышц вы переводите взгляд туда, где, как сообщает ваш слух, в этот момент что-то происходит.
Во-вторых, проекции видимого мира на сетчатках обоих глаз отображаются в поле 17 в виде двух почти идентичных проекций, которые затем объединяются межкорковыми связями каким-то еще не вполне понятным образом. Ученым, однако, известно, что по крайней мере на уровне коленчатого тела и поля 17 благодаря довольно сложной системе проводящих путей зрительная информация от каждого из двух глаз остается пространственно обособленной. У наркотизированных животных клетки слоя IV поля 17 реагируют на импульсы, идущие от обоих глаз. В клетках, расположенных выше и ниже слоя IV, ответные реакции носят более сложный характер. Здесь, как правило, некоторые клетки лучше реагируют на сигналы от одного глаза, чем от другого; иными словами, влияние одного глаза на такие клетки «доминирует» над влиянием другого глаза. Действительно, можно проследить за ходом нервных путей от определенных участков поля зрения одного глаза через связи в коленчатом теле вплоть до зрительной коры. Здесь эти пути подходят к чередующимся «колонкам глазодоминантности», которые формируются на расстояниях примерно 0,4 мм друг от друга и пронизывают всю толщу коры. Если взглянуть сверху на колонки глазодоминантности поля 17, то те из них, которые связаны с одним глазом, сольются в изогнутые гребешки, очень напоминающие кожные узоры на пальцах (см. рис. 53).
Рис. 53. Узор из колонок глазодоминантности в зрительной коре. Нейроны, максимально реагирующие на сигналы от левого или от правого глаза, образуют чередующиеся гребни (на рисунке белые или черные). При введении электрода под любым углом встречаются клетки того и другого типа. Рисунок гребней, напоминающий отпечатки пальцев, у разных индивидуумов различен.
При изучении этих колонок были выявлены удивительные факты, касающиеся формирования коры. Если один глаз будет закрыт от рождения, то нейроны коленчатого тела, с которыми связаны ганглиозные клетки сетчатки этого глаза, и соответствующие им колонки доминантности в коре не смогут нормально развиваться. И хотя сетчатка закрытого глаза полностью сохранит свою чувствительность (в чем можно убедиться, открыв этот глаз), ее связи не будут обеспечивать полноценной ответной реакции в коленчатом теле или коре. Колонки доминантности, связанные с закрытым глазом, окажутся более узкими, чем в норме. В то же время влияние глаза, функционировавшего с рождения, распространится на значительно большую, чем обычно, область коры. Эти эксперименты показывают, что степень связи между сенсорными нейронами и соответствующими клетками коры может регулироваться уровнем активности сенсорной системы.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.