Микроб редко приходит один. Как микроорганизмы влияют на нашу жизнь - Эгерт Маркус Страница 24
Микроб редко приходит один. Как микроорганизмы влияют на нашу жизнь - Эгерт Маркус читать онлайн бесплатно
Ирландские исследователи угостили в лаборатории микроба-испытуемого хлоридом бензалкония, широко распространенным антисептическим средством и консервантом, содержащимся во многих антибактериальных средствах для мытья посуды и для стирки. Возбудитель погиб, но только при высокой концентрации препарата. До того порогового значения микроб даже привык к антисептическому средству.
А использовав против микроба антибиотик ципрофлоксацин, ученые сделали шокирующее открытие: бактерии Pseudomonas оказались резистентны к препарату, который применяется, например, при кишечных инфекциях, а также инфекциях желчного пузыря и мочевого пузыря. И это при том, что возбудитель до того никогда не контактировал с антибиотиком. Тот же мембранный транспортный белок, с помощью которого бактерия избавилась от хлорида бензалкония, вышвырнул наружу и антибиотик.
Какие здесь выводы для домашнего использования? Нет абсолютно никаких причин использовать тяжелую артиллерию, к примеру антисептики, постоянно и в профилактических целях. Нормальной здоровой семье вполне хватит обычных способов уборки — она останется здоровой и счастливой. Исключением из этого правила является ситуация, когда член семьи с острым или хроническим инфекционным заболеванием лечится дома. Тогда лучше обратиться за советом к квалифицированному специалисту, например терапевту. И он подскажет, нужны ли дезинфицирующие средства.
Простые методы контроля размножения микробов дома без дезинфицирующих средств1. Температура выше 70 °C: варить, жарить, мыть горячей водой.
2. Высокоэнергетическое излучение: солнечный свет (УФ-излучение), микроволновая печь.
3. Удаление воды: сушка, проветривание, засолка, засахаривание.
4. Кислота и щелочь: уксус, лимонная кислота, соляная кислота, мыло, аммиак.
5. Холод и мороз: холод замедляет рост, мороз убивает (но хуже, чем жара).
6. Поверхностно-активные вещества: мыло, моющие и очищающие средства.
7. Ручная уборка уязвимых мест.
8. Регулярная замена уязвимых предметов (например, кухонных губок).
Микроб отправляется в поход
Иногда жить в маленьком городке, таком как Швеннинген, — преимущество. До любого места можно дойти пешком или доехать за пять минут на машине. Прежде всего это означает следующее: можно избежать поездки на общественном транспорте. И я считаю, что так и надо поступать, — особенно в эпидемию гриппа!
Конечно, сейчас я выступил как полный ипохондрик, но, хорошо владея предметом, прощаю себе эту слабость. В общественном транспорте проще всего подхватить инфекционную заразу, например грипп. Особенно когда зимой кашляющие и чихающие пассажиры стоят близко друг к другу.
Микроорганизмам от современного транспорта очень большая польза. При сравнительно легких простудных заболеваниях их распространение этим путем не страшно. Но с приходом гриппа веселье заканчивается. Грипп — это не насморк (ОРВИ), а тяжелая инфекционная болезнь, с высокой температурой и болями, с типичными для простуды симптомами. Ужасный итог эпидемии гриппа 2017–2018 годов в Германии: 1665 смертей.
Для сравнения: в 2011 году от инфекции ЕНЕС (энтерогеморрагическая кишечная палочка) в Германии скончались 53 человека. Возбудитель был найден: это были зараженные ростки пажитника из Египта. В мае и июне 2011 года Германия была близка к массовой панике, так как причина еще не была установлена. Конечно, это не умаляет серьезности эпидемии, но демонстрирует интересный психологический эффект: слово «грипп», как ни удивительно, многих людей совсем не беспокоит. Очевидно, что грипп считают формой чуть более серьезной простуды, неотъемлемой приметой зимы. Это не так.
Транспортное сообщение, объединяющее много точек по всему миру, способствует более быстрому распространению возбудителей и инфекционных заболеваний.
Микробы путешествуют рекордно быстроСегодня сеть глобального авиасообщения объединяет более 4000 аэропортов. К услугам путешественников около 2500 рейсов. Авиакомпании обслуживают ежегодно более 3 миллиардов пассажиров, которые вместе оставляют за собой ежедневно более 14 миллиардов километров. Прибавьте сюда еще и не поддающиеся исчислению путешествия на поездах, кораблях и, конечно, автомобилях.
Еще никогда в истории человечества опасному возбудителю болезней не было так просто попасть из пункта А в пункт В: к его услугам и борт авиалайнера, совершающий трансатлантический перелет, и пассажирское сидение общественного автобуса в Швеннингене.
Особенно впечатляющий пример развития общемирового трансфера патогенных микробов — эпидемия чумы, опустошившая в середине XIV века половину Европы и унесшая 20–25 миллионов человеческих жизней. Уже тогда распространению «черной смерти» способствовала оживленная морская торговля между странами. По торговым путям, соединяющим портовые города Средиземного моря с Крымом, Yersinia pestis (чумная палочка) попала из Азии в Европу. Но все же у возбудителя ушли на дорогу десятилетия.
Так как в XIV веке люди редко путешествовали на дальние расстояния, чума подкрадывалась медленно. По новейшим подсчетам, она распространялась равномерными волнами с юга на север со скоростью 4–5 километров в день.
Другим заразным болезням тоже требовалось много времени. Это привело к широко распространенному заблуждению о происхождении чумы. Микробиолог Йорг Хаккер прекрасно показал это на примере сифилиса, свирепствовавшего в конце XV века в Европе: «Сифилис называли во Франции неаполитанской болезнью, а в Неаполе — французской болезнью. В Англии сифилис получил название Morbus gallicus, но также назывался и Spanish disease, в Португалии — El mal de los Castellanos, в Польше — Deutsche krankheit, а в России — польская болезнь».
Кругообразное распространение заболеванийВ наше время болезни распространяются намного быстрее: 100–400 километров за день. Но установить первоначальное место, где возникла эпидемия, до сих пор бывает нелегко.
Физик-теоретик Дирк Брокманн из Берлинского университета Гумбольдта и социолог Дирк Хелбинг из Высшей технической школы в Цюрихе создали математическую модель для предсказания распространения заразных болезней. «Скрытая геометрия» — так назвали они те витиеватые пути, которыми путешествуют по миру патогенные микробы в XXI столетии.
Сначала казалось, что предсказаний о том, куда будет двигаться боевая армия микробов, сделать нельзя — слишком сложна структура современной мобильности. Но Брокманн и Хелбинг обнаружили, что можно выявить определенный паттерн: заразные болезни распространяются круговыми движениями, сопоставимыми с концентрическими кругами, которые вызывает камень, брошенный в воду.
Эти ученые ввели в свою модель новое понятие, которое по-новому определяет расстояние применительно к передвижению микроорганизмов. Формула эффективного расстояния учитывает тот факт, что в наше время качество транспортного сообщения не менее важно, чем абсолютное расстояние в километрах. Очень интересное наблюдение, которое подтверждается моим многострадальным опытом.
Сев на поезд на вокзале Швеннингена (если обычная станция заслуживает такого гордого названия), уже через два часа оказываешься в аэропорту Штутгарта, расположенном в ста километрах. Те же два часа — и ты уже за 500 километров, в Париже, выходишь спокойно из самолета и покупаешь в магазине аэропорта первый круассан.
Почти стерильный воздух в самолетеСамолеты — противоречивое средство передвижения, когда речь идет о распространении микробов. Реактивный самолет, например, может со скоростью ветра принести в Германии экзотического возбудителя, прибывшего вместе с туристом из далекой страны. Именно так за несколько недель эпидемия SARS (тяжелого острого респираторного синдрома) добралась из Южного Китая до Европы и Канады. Весной 2003 года этот респираторный синдром, вызываемый вирусом из группы коронавирусов, распространился сперва по крупным воздушным путям.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.