Следы в пыли. Развитие судебной химии и биологии - Торвальд Юрген Страница 58

Тут можно читать бесплатно Следы в пыли. Развитие судебной химии и биологии - Торвальд Юрген. Жанр: Научные и научно-популярные книги / Биология. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Следы в пыли. Развитие судебной химии и биологии - Торвальд Юрген читать онлайн бесплатно

Следы в пыли. Развитие судебной химии и биологии - Торвальд Юрген - читать книгу онлайн бесплатно, автор Торвальд Юрген

Приблизительно с 1935 года появились также методы, с помощью которых стало возможным изготовление тонких поперечных срезов волос и их фотографирование под микроскопом. Американец Книберг поместил волосы в рыбное желе и с помощью микротома изготовил поперечные срезы, предоставившие великолепную возможность для изучения волос.

Таким образом, технические возможности исследований со времени дела Жермен Бишон шагнули далеко вперед и позволили намного лучше увидеть структуру волос. Едва ли представляло теперь какие-нибудь трудности определение волос человека и животного. Иначе обстояло дело с различением волос разных людей. Правда, тончайшая техника наблюдения кутикулы помогла установить, что казавшийся первоначально однотипным рисунок кутикулы волос у разных людей может иметь некоторые различия. Но они незначительны и трудно уловимы. Что касается цвета, то теперь различали диффузный, равномерно распределенный пигмент, который давал волосам основной русый тон, и темные пигменты, которые придавали им различные оттенки вплоть до черного. Темные пигменты в виде зернышек располагались точно определенным образом. Отто Мартин помимо упомянутых указал на третий вид пигмента, который он назвал „веснушки". Они были крупней зернышек темного пигмента и имели собственные оттенки цветов. Наконец изучение поперечных срезов волос пополнило опыт новыми знаниями. Если когда-то считали, что гладкие волосы имеют, в основном, круглую форму, а волнистые — овальную, то теперь стало ясно, что гладкие волосы тоже могут быть овальными. Вообще же имелись существенные различия между поперечными срезами волос людей различных рас. Так на протяжении десятилетий появились возможности по обнаруженным на месте преступления волосам дать им характеристику и, основываясь на ней, осуществить сравнение с пробами волос подозреваемых.

Одновременно тщательные исследования показали, что в 60 % случаев волосы с лобка совпадали по цвету с волосами с головы человека. Почти 45 % волос из подмышечной впадины, независимо от цвета волос головы, имеют рыжеватый оттенок. Эти и подобные явления в середине двадцатого века порождали в среде специалистов анализа волос чувство неудовлетворенности тем, что, несмотря на технический прогресс, сегодня, как и в 1909 году, почти невозможно по одному обнаруженному на месте преступления волоску с уверенностью определить его принадлежность какому-то определенному человеку. Даже если на месте преступления обнаружено большое число волос, то о их происхождении можно было говорить лишь с большей или меньшей долей вероятности.

Было очевидным, что микроскопическое сравнение волос не может преодолеть определенный предел. Поэтому судебные медики и биологи уже два десятилетия, по крайней мере, искали другие возможности сравнения волос. Химический состав волос и их физические свойства были еще далеко не изучены. Еще в 1941 году Поль Л. Керк из Беркли попытался на 2529 волосках установить, каким образом преломляются лучи света, пропущенные через волос, и нельзя ли по различию индекса преломления определить сходство или различие волос. Он установил различия, но они не были достаточно убедительны.

Итак, опыты принесли разочарование. И все же надежда на создание новых методов не покидала ученых. В 1953 году Керк в первом издании своей книги „Расследование уголовных преступлений", писал: „Вероятнее всего, волосы каждого индивида имеют характерные свойства. Если это не так, то волосы представляют собой исключение из основной закономерности биологической индивидуальности. Безусловно, здесь возможны простые методы сравнения, а также убедительные доказательства. Требуются только всеобъемлющие новые исследования. Можно заранее утверждать, что эта работа в один прекрасный день будет вознаграждена созданием методики сравнения волос, которая будет иметь такое же значение для криминалистики, какое имеет сегодня отпечаток пальца… " Затем Керк заговорил о вещах, от которых, как он надеялся, зависело дальнейшее развитие этой проблемы, а именно о микроэлементах, т. е. о тех элементах, которые представлены в волосах лишь в виде мельчайших следов» „Таким элементам, — писал Керк, — до сегодняшнего дня уделялось мало внимания, но возможно, что они обеспечат решающий прогресс в криминалистическом исследовании волос. Количество мышьяка, свинца, кремния и других микроэлементов, имеющихся в волосах, наверняка, различно у разных людей и зависит от рода занятий, питания и других факторов. Эти элементы могли бы способствовать установлению происхождения волос с места преступления, когда удастся найти достаточно тонкие методы установления мельчайших количеств элементов, не разрушая при этом самих волос, которые являются вещественным доказательством".

Когда Керк писал об этом, ничто еще не предвещало осуществления его мечты. Пятьюдесятью годами раньше, в 1903 году, француз Мельер определил микроэлементы, правда, в пепле волос и, помимо прочего, нашел натрий, магний, алюминий, кремний, марганец и никель. Следовательно, представления Керка не были ошибочными. Но при этом всегда уничтожались волосы. Даже спектрографические приборы не улавливали ничтожное содержание микроэлементов в волосах. Годы после второй мировой войны принесли многочисленные усовершенствования в области спектрального анализа. Спектрометры новых видов регистрировали с помощью электронных вычислительных приборов спектральные линии, вызванные исследуемым веществом, переносили их данные на счетчики и позволяли определить количество мельчайших частиц вещества. В основу устройства других фотометров был положен тот принцип, что спектральные полосы, производимые пламенем, подвергаются типичным изменениям, если опрыскивать пламя водным раствором определенных химических веществ. Составлены целые каталоги соответствующих веществ и вызываемых ими изменений, и с их помощью можно определять эти вещества в неизвестных соединениях. Однако казалось, что установить мельчайшие количества микроэлементов в границах нанограмма (одной миллионной миллиграмма) было невозможно. Приблизительно в то время, когда появилась книга Керка, Стефан Берг и Адольф Шентаг попытались в Мюнхене определить спектрографическим путем внешние загрязнения волос. При этом оказалось, что даже тщательно очищенные пробы волос содержали различные количества микроэлементов кальция, железа, алюминия и марганца. Но это были случайные данные, и вряд ли кто-нибудь догадывался тогда, что пройдет еще несколько лет и мечта Керка станет осуществимой.

Роланда Андре Руан, химик лаборатории Королевской канадской конной полиции в Саквилле, тоже не подозревала о такой возможности, когда взяла на себя 15 мая 1958 года проведение анализа волос по делу Бушар. Весь объем работы, связанный с анализом волос, был ей мало знаком. Поэтому она обратилась за помощью в лабораторию Оттавы, где исследованиями волос и волокон занимался констебль Франсис М. Керр, молодой сотрудник полиции. Через несколько дней пробы волос отправили в Оттаву, и никто не подозревал, какую важную роль суждено было им сыграть в научно-криминалистической исследовательской работе.

В 1952 году — за шесть лет до начала дела Бушар — к группе канадских ученых, работавших в атомной лаборатории Чок-Ри- вер, расположенной северо-западней столицы Оттавы, присоединился двадцатипятилетний молодой человек — Роберт Джерви, родившийся в 1927 году в Торонто. В университете своего родного города он изучал химию и физику. В годы учебы в поле его внимания попали публикации, в которых описывалось использование атомных излучений для определения мельчайших количеств микроэлементов в химических, биологических или металлических субстанциях. Еще в 1936 году Г. Хевеши и А. Леви предприняли в Дании первые попытки с помощью искусственной радиации выявить наличие микроэлементов, которые не удавалось уловить с помощью спектрографа. После второй мировой войны этот способ определения микроэлементов, называющийся „нейтронный активационный анализ, стал быстро развиваться. Его принцип, в основном, кажется довольно простым. Многие из известных химических элементов — от бериллия и натрия до железа и цинка, которые в естественном состоянии не бывают радиоактивными, как, например, уран, — можно превратить в излучающие, если подвергнуть их бомбардировке нейтронами — мельчайшими элементарными частицами атомных ядер. Атомы неизлучающих элементов под воздействием бомбардировки нейтронами превращаются в излучающие. Решающим при этом является то, что каждый из таких элементов посылает лучи, по количеству и интенсивности отличающиеся от лучей других элементов.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.