Александр Уголев - Естественные технологии биологических систем Страница 8

Тут можно читать бесплатно Александр Уголев - Естественные технологии биологических систем. Жанр: Научные и научно-популярные книги / Биология, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Александр Уголев - Естественные технологии биологических систем читать онлайн бесплатно

Александр Уголев - Естественные технологии биологических систем - читать книгу онлайн бесплатно, автор Александр Уголев

Вместе с тем целостное пищеварение не обеспечивает эффективного перехода от гидролиза к транспорту, так как резорбирующая мембрана и освобождающиеся в процессе гидролиза мономеры разделены значительным расстоянием и требуется определенное время, чтобы мономеры достигли поверхности всасывающей клетки. Существует определенная вероятность перехвата продуктов гидролиза (прежде чем они достигнут резорбирующей поверхности) бактериями, населяющими полость тонкой кишки высших организмов.

2.3.2. Внутриклеточное пищеварение

Этим термином обозначаются случаи, когда не-расщепленные или частично расщепленные пищевые вещества проникают внутрь клетки, где подвергаются гидролизу ферментами цитоплазмы, не выделяемыми за пределы клетки. Внутриклеточное пищеварение распространено у простейших и наиболее примитивных многоклеточных организмов, например у губок и плоских червей. Как дополнительный механизм гидролиза пищевых веществ оно встречается у немертин, иглокожих, некоторых кольчатых червей и многих моллюсков. У высших позвоночных животных и человека оно выполняет главным образом защитные функции, например фагоцитоз.

Различаются два типа внутриклеточного пищеварения. Первый связан с транспортом небольших молекул через клеточные мембраны и последующим перевариванием ферментами цитоплазмы. Внутриклеточное пищеварение может также происходить в специальных внутриклеточных полостях — пищеварительных вакуолях, присутствующих постоянно или образующихся при фагоцитозе и пиноцитозе и исчезающих после расщепления захваченной пищи. Второй тип пищеварения в большинстве случаев связан с участием лизосом, которые содержат широкий набор гидролитических ферментов (фосфатаз, протеаз, глюкозидаз, липаз и др.) с оптимумом действия в кислой среде (pH 3.5—5.5). Пищевые структуры или пищевые растворы в околоклеточной среде вызывают впячивания плазматической мембраны, которые затем отшнуровываются и погружаются в цитоплазму, образуя пиноцитозные и фагоцитозные вакуоли. Соединяясь с последними, лизосомы образуют фагосомы, где происходит контакт ферментов с соответствующими субстратами. Образовавшиеся продукты гидролиза всасываются через мембраны фагосом. После завершения пищеварительного цикла остатки фагосом выбрасываются за пределы клетки путем экзоцитоза. Лизосомы играют также важную роль в расщеплении собственных структур клетки, которые используются в качестве пищевого материала либо данной клеткой, либо за ее пределами.

По своим механизмам внутриклеточное пищеварение может быть рассмотрено как сочетание микрополостного и мембранного гидролиза в пределах клетки. Действительно, при внутриклеточном пищеварении ферменты могут оказывать свой гидролитический эффект в цитоплазме клетки или в фагосоме, т.е. в среде, что свойственно полостному пищеварению, а также на внутренней поверхности фагосомной мембраны, что свойственно мембранному пищеварению.

Внутриклеточное пищеварение лимитировано проницаемостью мембраны и процессами эпдоцитоза, которые характеризуются небольшой скоростью и, по-видимому, не могут играть существенной роли в обеспечении пищевых потребностей высших организмов.

Тем не менее они могут способствовать проникновению в клетку некоторых уникальных веществ, в частности иммуноглобулинов.

Эндоцитозам приписывается важная роль в ассимиляции пищевых веществ в период раннего постнатального развития.

2.3.3. Мембранное (пристеночное, контактное) пищеварение

Мембранное пищеварение, открытое в конце 50-х гг., пространственно занимает промежуточное положение между внеклеточным и внутриклеточным и осуществляется ферментами, локализованными на структурах клеточной мембраны и ее дериватов (у высших животных и человека — на апикальной поверхности кишечных клеток). Активные центры ферментов ориентированы определенным образом по отношению к мембране и водной фазе. Свободная ориентация каталитических центров ферментов по отношению к субстратам невозможна. Глубоко расположенные связи, по-видимому, недоступны действию ферментов, осуществляющих мембранное пищеварение. Этим оно существенно отличается от полостного и внутриклеточного типов, если последнее происходит в фагосомах.

Мембранное пищеварение осуществляется как адсорбированными из полости тонкой кишки ферментами (преимущественно панкреатического происхождения), так и собственно кишечными, или мембранными, синтезированными в кишечных клетках и встроенными в состав их апикальной липопротеиновой мембраны (табл. 1). Ферменты, адсорбированные на структурах кишечной слизистой (главным образом в гликокаликсном пространстве), реализуют в основном промежуточные этапы гидролиза всех основных видов пищевых веществ. Собственно кишечные ферменты осуществляют преимущественно заключительные этапы расщепления пищевых биополимеров. По-видимому, адсорбированные ферменты связаны в основном со структурами гликокаликса (рис. 5), а собственно кишечные встроены в структуры плазматической мембраны кишечных клеток. Тем не менее на поверхности липопротеиновой мембраны могут адсорбироваться ферменты, поступающие в полость тонкой кишки с панкреатическим соком, а собственно кишечные ферменты, по крайней мере частично, могут включаться в гликокаликс.

Основные ферменты, реализующие мембранное пищеварение в тонкой кишке млекопитающих

Происхождение фермента Фермент КФ Адсорбированные панкреатические ферменты Амилаза 3.2.1.1 Липаза 3.1.1.3 Трипсин 3.4.21.4 Химотрипсин 3.4.21.1 Карбоксипептидаза А 3.4.12.2 Карбоксипептидаза В 3.4.12.3 Эластаза 3.4.21.11 Рибонуклеазэ 3.1.4.22 Собственно кишечные ферменты Мальтаза 3.2.1.20 Сахараза 3.2.1.48 Изомальтаза 3.2.1.10 Гамма-амилаза 3.2.1.3 Лактаза 3.2.1.23 Трегаяаза 3.2.1.28 Щелочная фосфатаза 3.1.3.1 Моноглицеридлипаза 3.1.1.23 Пептидазы 3.4.11 - 15 Аминопептидаза * 3.4.11.2 Дипептидиламинопепти- даза 3.4.14.1 Карбоксипептидаза 3.4.12.4 Энтерслептидаза 3.4.21.9 Гамма-глутамилтранспептидаза 2.3.2.2 Холестеролэстераза 3.1.1.13

* Аминопептидаза М, аминопешчдаза N, аланинаминопептидаза.

Рис. 5. Упрощенная схема распределения адсорбированных ферментов на поверхности гликокаликса (I), в гликокаликсном пространстве (II) и на липопротеиновой мембране (III) кишечной клетки.

1 — полость тонкой кишки; 2 — ферменты;3 — гликокаликс; 4 — мембрана.

Рис. 6. Схема отделения апикального гликокаликса от липопротеииовой мембраны кишечной клетки.

1 — агаровая реплика; 2 — апикальный гликокаликс; 3 — микровор-синки; 4 — латеральный гликокаликс.

Рис. 7. Щеточная кайма кишечной клетки крысы.

А— продольный разрез апикальной зоны интактной клетки; виден гликокаликс на внешней (апикальной) и боковой (латеральной) поверхностях микроворсинок. В — продольный разрез апикальной зоны клетки после отделения агаровой реплики; гликокаликс на внешней поверхности микроворсинок отсутствует, видны неповрежденная липопротеиновая мембрана клетки и латеральный гликокаликс. 80 000х.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.