Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Страница 12
Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ читать онлайн бесплатно
Во-первых, настоящий телепортатор не перемещает ваши атомы из пункта Л в пункт В. На самом деле он создает точную копию. Представьте себе, что вы хотите переместить статую на другой конец комнаты — раз уж вам не хочется проводить эксперименты на людях. Тогда у приемника должно быть в распоряжении достаточно атомов углерода, достаточно атомов железа, достаточно атомов кальция и так далее — и Все наготове. Передатчику надо будет отправить сигнал, который дает приемнику точнее инструкции, описывающие волновую функцию каждого атома и общее устройство статуи. Если в пункте назначения удастся точно скопировать волновые функции, значит, у нас получится самая настоящая телепортация.
Кажется, что здесь что-то не так: ведь мы только скопировали статую, а не переместили ее. Позвольте задать вам один вопрос. А какая разница? Скопированная статуя будет выглядеть точно так же, вплоть до мельчайших деталей. И весить будет столько же, и на ощупь такая же, и эксперты признают ее подлинной, и так далее.
С точки зрения законов физики статуя будет точно такая же. Вселенная ведь не отличает один атом, например, кальция от другого. Все они идентичны. Более того, процесс отправления сигнала приемнику разрушает волновые функции оригинала. Иначе говоря, телепортационное устройство — это вам не факс: вы начинаете с одного предмета и получаете тоже один предмет, ТОЛЬКО В другом МЕСТЕ!
Итак, с телепортацией статуй покончено. Что будет, если мы телепортируем человека — например, лично вас? Телепортированная версия «вас» не почувствует никакой разницы. Что есть «вы», как не сумма волновых функций квадрильонов составляющих вас атомов? Эти атомы определяют не только ваш внешний облик, но и ваши воспоминания. А поскольку оригинал, с которого вас скопировали, разрушен, других «вас» на свете нет, и оспаривать ваши воспоминания некому.
Так прекрасно (или ужасно), что даже не верится? Не обольщайтесь, поскольку сначала нам надо кое-что прояснить. Всю эту главу мы говорили о волновой функции отдельных атомов. На самом деле, если два атома взаимодействуют друг с другом, более уместно рассматривать комбинированную волновую функцию двух атомов. В таких случаях говорят о «запутанности квантовых состояний» этих атомов, а это всего-навсего ученый термин, обозначающий, что если мы знаем что-то на квантовом уровне об одном атоме, то знаем и о другом.
Базовая процедура такова:
1. Берем два атома (А и В), перепутываем их[27]и один —А — подаем на передаточный конец вашего телепортационного устройства, а второй — В — на приемный конец.
2. Передатчик берет другой атом, тот, который он хочет телепортировать (С), и интерферирует его с А. В процессе происходит коллапс волновой функции и А» и Б на приемном конце. Мы уже видели, что интерференция и наблюдение влияют на волновые функции именно так, и в результате С тоже меняется. Это все равно что сказать, что объект, который вы передали, уничтожен.
3. Приемник на своем конце проделывает то же самое, но интерферирует атом-мишень I) со своим измененным и запутанным атомом В. Его интерференция также влияет на I), но производит обратный эффект, и Ь приобретает оригинальную волновую функцию атома С.
Телепортация — дело необычайно трудное. Лишь в 1997 году удалось телепортировать один-единст- венный фотон, и лишь в 2004 году несколько групп ученых сумели телепортировать один-единственный атом, да и то всего на расстояние в несколько метров. Учитывая, сколько потребовалось трудов, было бы проще просто перенести атом из одного места в другое.
Чем крупнее система, тем сложнее ее телепортировать. Даже телепортация одной молекулы пока что далеко за пределами наших экспериментальных способностей. Так что хотя телепортация, строго говоря, возможна, пройдет еще очень много времени, прежде чем станет отдаленно возможной телепортация человека, да и тогда мы бы не рекомендовали ее практиковать.
VI. Если в лесу падает дерево и никто этого не слышит, производит ли оно грохот?Наши примеры были сосредоточены на микроскопических частицах, однако мы вовсе не утверждали, что для того, чтобы вести себя по-квантовому, частица обязательно должна быть крошечной. Более того, на самом деле мы доказывали, что вся наша Вселенная имеет фундаментально квантовую природу. В самом деле, если микроскопический мир управляется исключительно квантовыми законами, нельзя ли обобщить их и счесть, что и мы подчиняемся этим правилам?
И да и нет.
Возьмем, к примеру, принцип неопределенности[28]. Когда мы говорили о нем, то оставили в стороне все сложные математические выкладки (читайте: всю математику), поэтому сейчас должны добавить еще одну детальку. Чем массивнее частица, тем точнее мы способны вычислить и ее местоположение, и ее скорость.
Например, представьте себе, что мы проделываем опыт с двумя щелями с потоком электронов. Если две щели разнесены на миллиметр, то мы вправе предположить, что неопределенность положения электрона — примерно миллиметр. Иначе никак — ведь мы не знаем, сквозь какую щель прошел электрон. Пожонглировав немного цифрами, мы обнаружим, что скорость электрона неопределенна примерно на 160 метров в час. Не слишком большое число, зато оно поддается измерению.
А если мы измерим скорость Хайда (когда он, например, скрывается с места преступления) с точностью до 160 метров в час? Это гораздо точнее, чем точность любого прибора, который может оказаться у вас под рукой. Предположим, что поскольку мы вычислили скорость Хайда с вполне осязаемой и измеряемой точностью, в его местоположении должна быть неопределенность. Она и есть. Местоположение Хайда неопределенно с точностью примерно одна десятиквинтиллиониая доля размера ядра атома. На более мелком масштабе Хайд вел бы себя как волна. Поскольку сам он гораздо крупнее одной десятиквинтиллионной доли размера ядра атома, то во всех мыслимых ситуациях ведет себя как частица. То есть нет никаких представимых обстоятельств, в которых макроскопические предметы (вроде нас с вами, Джекила и Хайда) будут вести себя как квантовые объекты.
Вернемся к вопросу, с которого мы начали эту главу, и поговорим о классическом эксперименте, который глубоко запал в общественное сознание,— об Эрвине Шредингере и его легендарном коте.
Пусть Хайд, этот бессердечный негодяй, сделает ящик с флаконом яда внутри. Если некий радиоактивный атом, также заключенный в этот ящик, распадается за определенный отрезок времени, яд попадет в ящик. Если атом не распадется, яд останется во флаконе. Затем Хайд сажает в ящик кота и закрывает крышку[29].
Назначенное время прошло. Жив кот или мертв?
Этот вопрос Шредингер задал еще в далеком 1935 году — как бы между прочим, в одной длинной сугубо технической статье,— и обсуждение его заняло не больше места, чем в нашей книге. И хотя загадка шредингеровского кота ничего не говорит нам о том, как создать квантовый компьютер или микросхему, она заставляет задать некоторые вопросы о подлинной природе Вселенной. Оказывается, есть несколько способов отравить кота — или по крайней мере интерпретировать факт отравления.
Копенгагенская интерпретацияВ 1927 году два основателя квантовой механики — Нильс Бор и Вернер Гейзенберг — сформулировали первую версию так называемой копенгагенской интерпретации квантовой механики. В целом она заключается именно в том, на что мы опирались все это время:
1) система описывается исключительно своей волновой функцией;
2) волновая функция показывает, что определенные измерения сугубо вероятностны;
3) как только мы делаем измерение, происходит коллапс волновой функции, и у нас остается конкретное число.
И хотя мы собираемся описать некоторые другие точки зрения, любой физик, работающий от звонка до звонка, считает копенгагенскую интерпретации^ общепринятой версией событий, в основном потому, что она позволяет нам производить вычисления, не слишком задумываясь о том, что все это на самом деле значит[30].
Однако даже среди горячих сторонников квантовой механики существуют определенные разногласия относительно того, что на самом деле гласит копенгагенская интерпретация. Существует ли на самом деле волновая функция? И правда ли это, что реальность системы заключается только в том, что мы наблюдаем? Лично нам кажется, что это пустые придирки. Лично нам гораздо ближе версия Дэвида Мермина: «Если бы меня заставили изложить суть копенгагенской интерпретации одной фразой, я бы ответил: "Заткнись и считай!"»
Ближе к делу: как получается, что то, что мы что- то наблюдаем, приводит к коллапсу наблюдаемого? Вообще-то мы и сами состоим из субатомных частиц, которые также подчиняются законам квантовой механики. Откуда Вселенная знает, как перейти из состояния неопределенности до того, как произошло измерение, к определенности после этого?
Жалоба
Напишите нам, и мы в срочном порядке примем меры.