Яков Перельман - Занимательная физика (книга 1) Страница 19
Яков Перельман - Занимательная физика (книга 1) читать онлайн бесплатно
В этой книге мы рассмотрели уже несколько мнимых “вечных двигателей” и выяснили безнадежность попыток их изобрести. Теперь побеседуем о “даровом” двигателе, т. е. о таком двигателе, который способен работать неопределенно долго без всяких забот с нашей стороны, так как черпает нужную ему энергию из неистощимых ее запасов в окружающей среде. Все конечно, видели барометр – ртутный или металлический. В первом барометре вершина ртутного столбика постоянно то поднимается, то опускается, в зависимости от перемен атмосферного давления; в металлическом – от той же причины постоянно колеблется стрелка. В XVIII веке один изобретатель использовал эти движения барометра для завода часового механизма и таким образом построил часы, которые сами собой заводились и шли безостановочно, не требуя никакого завода. Известный английский механик и астроном Фергюссон видел это интересное изобретение и отозвался о нем (в 1774 г.) так:
“Я осмотрел вышеописанные часы, которые приводятся в непрерывное движение подъемом и опусканием ртути в своеобразно устроенном барометре; нет основания думать, чтобы они когда-либо остановились, так как накопляющаяся в них двигательная сила была бы достаточна для поддержания часов в ходу на целый год даже после полного устранения барометра. Должен сказать со всей откровенностью, что, как показывает детальное знакомство с этими часами, они являются самым остроумным механизмом, какой мне когда-либо случалось видеть, – и по идее, и по выполнению”.
К сожалению, часы эти не сохранились до нашего времени – они были похищены, и местонахождение их неизвестно. Остались, впрочем, чертежи их конструкции, выполненные упомянутым астрономом, так что есть возможность их восстановить.
Рис. 72. Устройство дарового двигателя XVIII в.
В состав механизма этих часов входит ртутный барометр крупных размеров. В стеклянной урне, подвешенной в раме, и в опрокинутой над ней горлышком вниз большой колбе заключается около 150 кг ртути. Оба сосуда укреплены подвижно один относительно другого; искусной системой рычагов достигается то, что при увеличении атмосферного давления колба опускается и урна поднимается, при уменьшении же давления – наоборот. Оба движения заставляют вращаться небольшое зубчатое колесо всегда в одну сторону. Колесо неподвижно только при полной неизменности атмосферного давления, но во время пауз механизм часов движется прежде накопленной энергией падения гирь. Нелегко устроить так, чтобы гири одновременно поднимались вверх и двигали своим падением механизм. Однако старинные часовщики были достаточно изобретательны, чтобы справиться с этой задачей. Оказалось даже, что энергия колебаний атмосферного давления заметно превышала потребность, т. е. гири поднимались быстрее, чем опускались; понадобилось поэтому особое приспособление для периодического выключения падающих гирь, когда они достигали высшей точки.
Легко видеть важное принципиальное отличие этого и подобных ему “даровых” двигателей от “вечных” двигателей. В даровых двигателях энергия не создается из ничего, как мечтали устроить изобретатели вечного двигателя; она черпается извне, в нашем случае – из окружающей атмосферы, где она накопляется солнечными лучами. Практически даровые двигатели были бы столь же выгодны, как и настоящие “вечные” двигатели, если бы конструкция их была не слишком дорога по сравнению с доставляемой ими энергией (как в большинстве случаев и бывает).
Немного далее мы познакомимся с другими типами дарового двигателя и покажем на примере, почему промышленное использование подобных механизмов оказывается, как правило, совершенно невыгодным.
Глава шестая . ТЕПЛОВЫЕ ЯВЛЕНИЯ
Когда Октябрьская железная дорога длиннее – летом или зимой?На вопрос: “Какой длины Октябрьская железная дорога?” – кто-то ответил:
– Шестьсот сорок километров в среднем; летом метров на триста длиннее, чем зимой.
Неожиданный ответ этот не так нелеп, как может показаться. Если длиной железной дороги называть длину сплошного рельсового пути, то он и в самом деле должен быть летом длиннее, чем зимой. Не забудем, что от нагревания рельсы удлиняются – на каждый градус Цельсия более чем на одну 100000-ю своей длины. В знойные летние дни температура рельса может доходить до 30 – 40° и выше; иногда рельс нагревается солнцем так сильно, что обжигает руку. В зимние морозы рельсы охлаждаются до – 25° и ниже. Если остановиться на разнице в 55° между летней и зимней температурой, то, умножив общую длину пути 640 км на 0,00001 и на 55, получим около 1/3 км. Выходит, что и в самом деле рельсовый путь между Москвой и Ленинградом летом на треть километра, т. е. примерно метров на триста, длиннее, нежели зимой.
Изменяется здесь, конечно, не длина дороги, а только сумма длин всех рельсов. Это не одно и то же, потому что рельсы железнодорожного пути не примыкают друг к другу вплотную: между их стыками оставляются небольшие промежутки – запас для свободного удлинения рельсов при нагревании [Зазор этот, при длине рельсов 8 м, должен иметь при 0° размер 6 мм. Для полного закрытия такого зазора нужно повышение температуры рельса до 65 °С. При укладке трамвайных рельсов нельзя, по техническим условиям, оставлять зазоров. Эго обычно не вызывает искривления рельсов, так как вследствие погружения их в почву температурные колебания не так велики, да и самый способ скрепления рельсов препятствует боковому их искривлению. Однако в очень сильный зной трамвайные рельсы все же искривляются, как наглядно показывает прилагаемый рис. 73, исполненный с фотографии.]. Наше вычисление показывает, что сумма длин всех рельсов увеличивается за счет общей длины этих пустых промежутков; общее удлинение в летние знойные дни достигает 300 м по сравнению с величиной ее в сильный мороз. Итак, железная часть Октябрьской дороги действительно летом на 300 м длиннее, нежели зимой.
Рис. 73. Изгибание трамвайных рельсов вследствие сильного нагревания.
То же случается иногда и с рельсами железнодорожного пути. Дело в том, что на уклонах подвижной состав поезда при движении увлекает рельсы за собой (иной раз даже вместе со шпалами), в итоге на таких участках пути зазоры нередко исчезают, и рельсы прилегают друг к другу концами вплотную.
Безнаказанное хищениеНа линии Ленинград – Москва каждую зиму пропадает совершенно бесследно несколько сотен метров дорогой телефонной и телеграфной проволоки, и никто этим не обеспокоен, хотя виновник исчезновения хорошо известен. Конечно, и вы знаете его: похититель этот – мороз. То, что мы говорили о рельсах, вполне применимо и к проводам, с той лишь разницей, что медная телефонная проволока удлиняется от теплоты в 1,5 раза больше, чем сталь. Но здесь уже нет никаких пустых промежутков, и потому мы без всяких оговорок можем утверждать, что телефонная линия Ленинград – Москва зимой метров на 500 короче, нежели летом. Мороз безнаказанно каждую зиму похищает чуть не полкилометра проволоки, не внося, впрочем, никакого расстройства в работу телефона или телеграфа и аккуратно возвращая похищенное при наступлении теплого времени.
Но, когда такое сжатие от холода происходит не с проводами, а с мостами, последствия бывают подчас весьма ощутимы. Вот что сообщали в декабре 1927 г. газеты о подобном случае:
“Необычайные для Франции морозы, стоящие в течение нескольких дней, послужили причиной серьезного повреждения моста через Сену, в самом центре Парижа. Железный остов моста от мороза сжался, отчего вздулись и затем рассыпались кубики на покрывающей его мостовой. Проезд по мосту временно закрыт”.
Высота Эйфелевой башниЕсли теперь нас спросят, какова высота Эйфелевой башни, то прежде чем ответить: “300 метров”, вы, вероятно, осведомитесь:
– В какую погоду – холодную или теплую? Ведь высота столь огромного железного сооружения не может быть одинакова при всякой температуре. Мы знаем, что железный стержень длиной 300 м удлиняется на 3 мм при нагревании его на один градус. Приблизительно на столько же должна возрастать и высота Эйфелевой башни при повышении температуры на 1°. В теплую солнечную погоду железный материал башни может нагреться в Париже градусов до +40, между тем как в холодный, дождливый день температура его падает до +10°. а зимою до 0°, даже до – 10° (большие морозы в Париже редки). Как видим, колебания температуры доходят до 40 и более градусов. Значит, высота Эйфелевой башни может колебаться на 3 * 40 = 120 мм, или на 12 см (больше длины этой строки).
Прямые измерения обнаружили даже, что Эйфелева башня еще чувствительнее к колебаниям температуры, нежели воздух: она нагревается и охлаждается быстрее и раньше реагирует на внезапное появление солнца в облачный день. Изменения высоты Эйфелевой башни были обнаружены с помощью проволоки из особой никелевой стали, обладающей способностью почти не изменять своей длины при колебаниях температуры. Замечательный сплав этот носит название “инвар” (от латинского “неизменный”).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.