Ричард Фейнман - 5. Электричество и магнетизм Страница 2
Ричард Фейнман - 5. Электричество и магнетизм читать онлайн бесплатно
Из материала, изложенного в первом томе, мы знаем, как определить движение частицы, если сила, действующая на нее, известна. Уравнение (1.1) в сочетании с уравнением движения дает
(1.2)
Значит, если Е и В известны, то можно определить движение зарядов. Остается только узнать, как получаются Е и В.
Один из самых важных принципов, упрощающих получение величины полей, состоит в следующем. Пусть некоторое количество движущихся каким-то образом зарядов создает поле E1 , a другая совокупность зарядов — поле Е2. Если действуют оба набора зарядов одновременно (сохраняя те же свои положения и движения, какими они обладали, когда рассматривались порознь), то возникающее поле равно в точности сумме
Е = Е1 + Е2. (1.3)
Этот факт называется принципом наложения полей (или принципом суперпозиции}. Он выполняется и для магнитных полей.
Принцип этот означает, что если нам известен закон для электрического и магнитного полей, образуемых одиночным зарядом, движущимся произвольным образом, то, значит, нам известны все законы электродинамики. Если мы хотим знать силу, действующую на заряд А, нам нужно только рассчитать величину полей Е и В, созданных каждым из зарядов В, С, D и т. д., и сложить все эти Е и В; тем самым мы найдем поля, а из них — силы, действующие на А. Если бы оказалось, что поле, создаваемое одиночным зарядом, отличается простотой, то это стало бы самым изящным способом описания законов электродинамики. Но мы уже описывали этот закон (см. вып. 3, гл. 28), и, к сожалению, он довольно сложен.
Оказывается, что форма, в которой законы электродинамики становятся простыми, совсем не такая, какой можно было бы ожидать. Она не проста, если мы захотим иметь формулу для силы, с которой один заряд действует на другой. Правда, когда заряды покоятся, закон силы — закон Кулона — прост, но когда заряды движутся, соотношения усложняются из-за запаздывания во времени, влияния ускорения и т. п. В итоге лучше не пытаться строить электродинамику с помощью одних лишь законов сил, действующих между зарядами; гораздо более приемлема другая точка зрения, при которой с законами электродинамики легче управляться.
§ 2. Электрические и магнитные поля
Первым делом нужно несколько расширить наши представления об электрическом и магнитном векторах Е и В. Мы определили их через силы, действующие на заряд. Теперь мы намереваемся говорить об электрическом и магнитном полях в точке, даже если там нет никакого заряда.
Фиг. 1.1. Векторное поле, представленное множеством стрелок, длина и направление которых отмечают величину векторного поля в тех точках, откуда выходят стрелки.
Следовательно, мы утверждаем, что раз на заряд «действуют» силы, то в том месте, где он стоял, остается «нечто» и тогда, когда заряд оттуда убрали. Если заряд, расположенный в точке (х, у, z), в момент t ощущает действие силы F, согласно уравнению (1.1), то мы связываем векторы Е и В с точкой (х, у, z) в пространстве. Можно считать, что Е (х, y, z, t) и В (х, у, z, t) дают силы, действие которых ощутит в момент t заряд, расположенный в (х, у, z), при условии, что помещение заряда в этой точке не потревожит ни расположения, ни движения всех прочих зарядов, ответственных за поля.
Следуя этому представлению, мы связываем с каждой точкой (х, у, z) пространства два вектора Е и В, способных меняться со временем. Электрические и магнитные поля тогда рассматриваются как векторные функции от х, у, z и t. Поскольку вектор определяется своими компонентами, то каждое из полей Е (х, у, 2, t) и В (х, у, z, t) представляет собой три математические функции от х, у, z и t.
Именно потому, что Е (или В) может быть определено для каждой точки пространства, его и называют «полем». Поле — это любая физическая величина, которая в разных точках пространства принимает различные значения. Скажем, температура — это поле (в этом случае скалярное), которое можно записать в виде Т (х, у, z). Кроме того, температура может меняться и во времени, тогда мы скажем, что температурное поле зависит от времени, и напишем Т (х, у, z, t). Другим примером поля может служить «поле скоростей» текущей жидкости. Мы записываем скорость жидкости в любой точке пространства в момент t в виде v (х, у, z, t). Поле это векторное.
Вернемся к электромагнитным полям. Хотя формулы, по которым они создаются зарядами, и сложны, у них есть следующее важное свойство: связь между значениями полей в некоторой точке и значениями их в соседней точке очень проста. Нескольких таких соотношений (в форме дифференциальных уравнений) достаточно, чтобы полностью описать поля. Именно в такой форме законы электродинамики и выглядят особенно просто.
Фиг. 1.2. Векторное поле, представленное линиями, касательными к направлению векторного поля в каждой точке.
Плотность линий указывает величину вектора поля.
Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И самая правильная точка зрения — это самая отвлеченная: надо просто рассматривать поля как математические функции координат и времени. Можно также попытаться получить мысленную картину поля, начертив во многих точках пространства по вектору так, чтобы каждый из них показывал напряженность и направление поля в этой точке. Такое представление приводится на фиг. 1.1. Можно пойти и дальше: начертить линии, которые в любой точке будут касательными к этим векторам. Они как бы следуют за стрелками я сохраняют направление поля. Если это сделать, то сведения о длинах векторов будут утеряны, но их можно сохранить, если в тех местах, где напряженность поля мала, провести линии пореже, а где велика — погуще. Договоримся, что число линий на единицу площади, расположенной поперек линий, будет пропорционально напряженности поля. Это, конечно, всего лишь приближение; иногда нам придется добавлять новые линии, чтобы их количество отвечало напряженности поля. Поле, изображенное на фиг. 1.1, представлено линиями поля на фиг. 1.2.
§ 3. Характеристики векторных полей
Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зададим вопрос, вытекает ли из нее «нечто», т. е. обладает ли поле свойством «истечения»? Скажем, для поля скоростей мы можем поинтересоваться, всегда ли скорость направлена от поверхности, или, в более общем случае, вытекает ли из поверхности больше жидкости (в единицу времени), нежели втекает.
Фиг. 1.3. Поток векторного поля через поверхность, определяемый как произведение среднего значения перпендикулярной составляющей вектора на площадь этой поверхности.
Общее количество жидкости, вытекающее через поверхность, мы назовем «потоком скорости» через поверхность за единицу времени. Поток через элемент поверхности равен составляющей скорости, перпендикулярной к элементу, умноженной на его площадь. Для произвольной замкнутой поверхности суммарный поток равен среднему значению нормальной компоненты скорости (отсчитываемой наружу), умноженному на площадь поверхности:
Поток = (Средняя нормальная компонента)·(Площадь поверхности).
(1.4)
В случае электрического поля можно математически определить понятие, сходное с истоком жидкости; мы тоже
Фиг. 1.4. Поле скоростей в жидкости (а).
Представьте себе трубку постоянного сечения, уложенную вдоль произвольной замкнутой кривой (б). Если жидкость внезапно заморозить повсюду, кроме трубки, то жидкость в трубке начнет циркулировать (в).
Фиг. 1.5. Циркуляция векторного поля, равная произведению
средней касательной составляющей вектора (с учетом ее знака
по отношению к направлению обхода) на длину контура.
называем его потоком, но, конечно, это уже не течение какой-то жидкости, потому что электрическое поле нельзя считать скоростью чего-то. Оказывается все же, что математическая величина, определяемая как средняя нормальная компонента поля, по-прежнему имеет полезное значение. Тогда мы говорим о потоке электричества, также определяемом уравнением (1.4). Наконец, полезно говорить и о потоке не только сквозь замкнутую, но и сквозь любую ограниченную поверхность. Как и прежде, поток сквозь такую поверхность определяется как средняя нормальная компонента вектора, умноженная на площадь поверхности. Эти представления иллюстрируются фиг. 1.3. Другое свойство векторных полей касается не столько поверхностей, сколько линий. Представим опять поле скоростей, описывающее поток жидкости. Можно задать интересный вопрос: циркулирует ли жидкость? Это значит: существует ли вращательное ее движение вдоль некоторого замкнутого контура (петли)? Вообразите себе, что мы мгновенно заморозили жидкость повсюду, за исключением внутренней части замкнутой в виде петли трубки постоянного сечения (фиг. 1.4). Снаружи трубки жидкость остановится, но внутри она может продолжать двигаться, если в ней (в жидкости) сохранился импульс, т. е. если импульс, который гонит ее в одном направлении, больше импульса в обратном. Мы определяем величину, называемую циркуляцией, как скорость жидкости в трубке, умноженную на длину трубки. Опять-таки мы можем расширить наши представления и определить «циркуляцию» для любого векторного поля (даже если там нет ничего движущегося). У всякого векторного поля циркуляция по любому воображаемому замкнутому контуру определяется как средняя касательная компонента вектора (с учетом направления обхода), умноженная на протяженность контура (фиг. 1.5):
Жалоба
Напишите нам, и мы в срочном порядке примем меры.