Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса Страница 24
Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса читать онлайн бесплатно
Более того — и это действительно впечатляюще, — отвлекаясь от озвученных примеров чёрных дыр и Большого взрыва, можно вычислить, насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 109 раз превышающая массу протона, так называемая масса Планка, сжатая до фантастически малого объёма примерно 10−99 кубического сантиметра (грубо говоря, это сфера с радиусом 10−33 сантиметра с так называемой планковской длиной, как показано на рис. 4.1).{29} Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. В целях объединения гравитации и квантовой механики потребуется совершить множество переходов, сталкиваясь с известным и неизвестным на всей этой гигантской территории, которая по большей части остаётся экспериментально недоступной. Такая задача весьма амбициозна и многие учёные были убеждены, что она нерешаема.
Рис. 4.1. Планковская длина, на которой сходятся гравитация и квантовая механика, примерно в 100 миллиардов миллиардов раз меньше, чем любая область, когда-либо исследованная экспериментально. На схеме каждое большое деление соответствует уменьшению размера в 1000 раз; благодаря этому данная схема целиком умещается на одной странице, что, однако, визуально снижает масштабность этого огромного диапазона. Для лучшего понимания укажем, что если увеличить атом до размеров наблюдаемой Вселенной, то планковская длина будет равна размерам обычного дерева
Поэтому вы можете представить то удивление и недоверие, когда в середине 1980-х годов в физическом сообществе поползли слухи, что в направлении объединения произошёл серьёзный теоретический прорыв в рамках подхода, названного теорией струн.
Теория струн
Хотя теория струн имеет репутацию сложной теории, её основная идея очень проста. Мы видели, что стандартная точка зрения, до теории струн, состояла в том, что фундаментальные составляющие являются точечными частицами — точками без внутренней структуры, — которые описываются уравнениями квантовой теории поля. С каждым типом частиц связан свой тип поля. Теория струн бросает вызов такому представлению, утверждая, что частицы не являются точечными. Вместо этого в теории струн предлагается рассматривать их как крошечные, струноподобные вибрирующие нити, как на рис. 4.2. Приглядитесь поближе к любой частице, которая раньше считалась элементарной, и вы увидите, как того требует теория, крохотную вибрирующую струнку. Загляните поглубже в электрон и вы обнаружите струну, загляните поглубже в кварк и вы опять обнаружите струну.
Рис. 4.2. Согласно струнному объяснению устройства природы, на планковских расстояниях фундаментальные составляющие материи имеют вид струноподобных нитей. Однако из-за ограниченности разрешающей способности нашего оборудования мы видим эти струны как точки
При более детальном рассмотрении, говорит теория, вы увидите, что струны в частицах разного типа неразличимы — лейтмотив всей теории струн, — но вибрируют они по-разному. Электрон менее массивен чем кварк, и согласно теории струн это означает, что струна электрона вибрирует менее энергично, чем струна кварка (очередное проявление эквивалентности энергии и массы, воплощённое в уравнении E = mc2). Электрон также обладает электрическим зарядом, величина которого превышает величину заряда кварка, и эта разница объясняется другими, более тонкими, различиями в струнном вибрационном поведении каждого из них. Различные свойства частиц объясняются разным вибрационным поведением нитей в теории струн, подобно тому как разные вибрации гитарных струн порождают звучание разных музыкальных нот.
На самой деле, теория побуждает нас думать, что вибрирующие струны не просто порождают свойства частицы-хозяина, а что они и есть сама частица. По причине бесконечно малого размера струны, порядка планковской длины — 10−33 сантиметра, даже самые точные современные эксперименты не могут подтвердить или опровергнуть протяжённую структуру струны. Большой адронный коллайдер, на котором частицы сталкиваются друг с другом при энергиях, превышающих в 10 триллионов раз энергию покоящегося протона, может добраться до расстояний примерно 10−19 сантиметра; это миллионная от миллиардной доли толщины волоса, но всё же оно слишком велико, на много порядков больше планковских расстояний. Поэтому струны выглядят как точки, даже если их изучать на самых мощных в мире ускорителях частиц, подобно тому как Земля выглядит как точка, если на неё смотреть с Плутона. Тем не менее, согласно теории струн, частицы являются струнами.
В этом, в двух словах, и заключается теория струн.
Струны, точки и квантовая гравитация
У теории струн есть много других существенных свойств, и её развитие значительно расширило то схематическое описание, которое я изложил. В этой главе (а также в главах 5, 6 и 9) мы познакомимся с некоторыми наиболее важными достижениями, но сейчас я хотел бы подчеркнуть три особо важных момента.
Во-первых, когда учёные физики предлагают модель описания природы с помощью квантовой теории поля, они также выбирают поля, которые войдут в теорию. Этот выбор диктуется экспериментальными ограничениями (каждый известный тип частиц определяет отбор соответствующего поля), а также теоретическими предпосылками (гипотетические частицы и их поля, такие как инфлатон и поле Хиггса, вводятся для изучения открытых и спорных вопросов). Главным примером является Стандартная модель. Рассматриваемая как венец достижений физики частиц XX столетия благодаря своей способности правильно описывать огромное количество данных, собранных на ускорителях частиц по всему миру, Стандартная модель является квантовой теорией поля, в которой присутствуют пятьдесят семь различных квантовых полей (это поля, соответствующие электрону, нейтрино, фотону и различным типам кварков — u-кварку, d-кварку, c-кварку и так далее). Стандартная модель, безусловно, крайне успешна, но многие физики полагают, что по-настоящему фундаментальное понимание не требует такого разношёрстного набора ингредиентов.
Впечатляющее свойство теории струн состоит в том, что частицы определяются самой теорией: разные типы частиц соответствуют разному вибрационному поведению струны. И поскольку вибрационное поведение задаёт свойства соответствующей частицы, то если мы поймём теорию настолько хорошо, что определим все типы вибрационного поведения, мы сможем объяснить все свойства всех частиц. Тогда потенциал и перспективы теории струн заключаются в том, чтобы превзойти квантовую теорию поля путём получения всех свойств частиц математически. Это не только объединит всё на свете под зонтиком вибрирующих струн, а также покажет, что будущие «сюрпризы» — как, например, открытие неизвестных пока типов частиц — встроены в теорию струн с самого начала и в принципе будут доступны при достаточно упорных вычислениях. Теория струн строится не последовательными приближениями к полному описанию природы. Она предлагает полное описание с самого начала.
Во-вторых, среди возможных вибраций струны есть одна, обладающая всеми нужными свойствами для того, чтобы быть квантовой частицей гравитационного поля. Хотя дострунные попытки свести воедино гравитацию и квантовую механику оказались неудачными, исследования выявили свойства, которыми будет обладать гипотетическая частица — получившая название гравитон, — соответствующая квантовому гравитационному полю. Было показано, что гравитон должен быть безмассовым, не иметь заряда и обладать квантово-механическим свойством, известным как спин-2. (Грубо говоря, гравитон должен вращаться как волчок, причём в два раза быстрее, чем фотон.){30} Замечательно, что первые струнные теоретики — Джон Шварц, Джоэл Шерк и, независимо от них, Тамиаки Йонея — обнаружили, что в списке струнных вибраций присутствует именно такая вибрация, свойства которой соответствуют гравитону. В точности соответствуют. Когда в середине 1980-х годов были выдвинуты убедительные доводы в пользу того, что теория струн является математически согласованной квантово-механической теорией (в основном благодаря работам Шварца и его соавтора Майкла Грина), присутствие гравитонов означало, что теория струн является давно искомой квантовой теорией гравитации. Этот пункт в списке достижений теории струн наиболее важен, именно поэтому она так быстро воспарила к вершинам мировой научной известности.[21]{31}
Жалоба
Напишите нам, и мы в срочном порядке примем меры.