Альберт Эйнштейн - Эволюция физики Страница 24
Альберт Эйнштейн - Эволюция физики читать онлайн бесплатно
Необходимо упомянуть еще об одном следствии полевой теории. Пусть имеется виток, по которому течет ток, возникающий, например, от батареи Вольта. Внезапно связь проводника с источником тока разрывается. Теперь, конечно, никакого тока нет!
Но в момент этого короткого разрыва происходит сложный процесс, который опять-таки может быть предсказан теорией поля. Перед разрывом тока вокруг проводника существовало магнитное поле. Оно перестало существовать в момент, когда ток был прерван. Следовательно, из-за разрыва тока магнитное поле исчезло. Число силовых линий, проходящих через поверхность, окруженную цепью, очень быстро изменилось. Но такое быстрое изменение, как бы оно ни осуществлялось, должно вызвать индукционный ток. Что действительно имеет значение, так это изменение магнитного поля, возбуждающее индукционный ток, тем более сильный, чем значительнее изменение поля. Этот вывод является другой проверкой теории. Разрыв тока должен сопровождаться возникновением сильного кратковременного индукционного тока. Эксперимент снова подтверждает предсказание теории. Тот, кто когда-либо разрывал ток, должен был заметить, что при этом появляется искра. Эта искра указывает на огромную разность потенциалов, вызванную быстрым изменением магнитного поля.
Тот же самый процесс можно рассмотреть с другой точки зрения, с точки зрения энергии. Магнитное поле исчезло, но появилась искра. Искра обладает некоторой энергией, поэтому и магнитное поле должно обладать энергией. Чтобы последовательно применять понятие поля и его язык, мы должны рассматривать магнитное поле как запас энергии. Только встав на этот путь, мы будем в состоянии описать магнитные и электрические явления в согласии с законом сохранения энергии.
Будучи вначале лишь вспомогательной моделью, поле становится все более и более реальным. Оно помогло нам понять уже известные факты и привело к новым. Приписывание полю энергии является дальнейшим шагом в развитии, в котором понятие поля оказывается все более существенным, а субстанциональные концепции, свойственные механистической точке зрения, всё более отходят на задний план.
Реальность поля
Количественная, математическая формулировка законов поля дана в так называемых уравнениях Максвелла. Указанные выше факты привели к формулировке этих уравнений, но содержание их значительно богаче, чем мы могли показать. Их простая форма скрывает глубину, обнаруживаемую только при тщательном изучении.
Формулировка этих уравнений является самым важным событием со времени Ньютона не только вследствие ценности их содержания, но и потому, что они дают образец нового типа законов.
Характерную особенность уравнений Максвелла, которая проявляется и во всех других уравнениях современной физики, можно выразить в одном предложении: уравнения Максвелла суть законы, выражающие структуру поля.
Почему уравнения Максвелла отличаются по своей форме и характеру от уравнений классической механики? Что означает утверждение, что эти уравнения описывают структуру поля? Как это возможно, что в результате опытов Эрстеда и Фарадея мы можем образовать новый тип закона, который оказывается столь важным для дальнейшего развития физики?
Мы уже видели из опыта Эрстеда, как силовые линии магнитного поля закручиваются вокруг изменяющегося электрического поля. А из опыта Фарадея мы видели, как силовые линии электрического поля закручиваются вокруг изменяющегося магнитного поля. Чтобы обрисовать некоторые характерные особенности теории Максвелла, сосредоточим все внимание на одном из этих опытов, скажем на опыте Фарадея. Повторим рисунок, показывающий, как электрический ток индуцируется под влиянием изменяющегося магнитного поля. Мы уже знаем, что индукционный ток возникает при изменении числа силовых линий, проходящих сквозь поверхность, ограниченную проводником. Ток возникнет тогда, когда изменяется магнитное поле, или деформируется виток, или когда он будет двигаться, — словом, когда изменяется число магнитных линий, проходящих через поверхность, независимо от того, чем вызвано это изменение. Если бы нужно было учитывать все эти различные возможности, обсуждать частные влияния каждой из них, то это привело бы к очень сложной теории. Но не можем ли мы упростить нашу задачу? Постараемся исключить из нашего рассмотрения все, что относится к форме витка, к его длине, к поверхности, ограниченной проводником. Представим себе, что виток, изображенный на рис. 59, становится все меньше и меньше, постепенно стягиваясь к очень малому витку, заключающему в себе лишь некоторую точку пространства. Тогда все касающееся величины и формы становится несущественным. В этом предельном случае, когда замкнутая кривая стягивается к точке, величина и форма ее автоматически исчезают из нашего рассмотрения и мы получаем законы, связывающие изменения магнитного и электрического полей в любой момент в любой точке пространства.
Рис. 59
Это один из принципиальных шагов, ведущий к уравнениям Максвелла. Он опять-таки является идеализированным опытом, выполненным в воображении путем повторения опыта Фарадея с витком, стягивающимся к точке.
Фактически его следовало бы назвать скорее полушагом, чем целым шагом. До сих пор наше внимание было сосредоточено на опыте Фарадея. Но так же внимательно и подобным же образом нужно рассмотреть и другую основу теории поля, опирающуюся на опыт Эрстеда. В этом опыте магнитные силовые линии навиваются на проводник с током. Стягивая витки магнитных силовых линий к точке, мы выполняем вторую половину шага, а весь шаг дает связь между изменениями магнитных и электрических полей в любой точке пространства в любой момент.
Но необходим еще другой существенный шаг. Согласно опыту Фарадея, необходим проводник, с помощью которого обнаруживается наличие электрического поля, так же как в опыте Эрстеда необходим магнитный полюс или игла, обнаруживающая наличие магнитного поля. Новые теоретические идеи Максвелла идут дальше этих экспериментальных фактов. Электрическое и магнитное поля или, короче, электромагнитное поле является, согласно теории Максвелла, чем-то реальным. Электрическое поле создается изменяющимся магнитным полем совершенно независимо от того, имеется ли проводник для обнаружения его существования. Магнитное поле создается изменяющимся электрическим полем независимо от того, имеется ли магнитный полюс для обнаружения его существования.
Таким образом, к уравнениям Максвелла приводят два существенных шага. Первый шаг: в рассмотренных опытах Эрстеда и Роуланда силовые линии магнитного поля, навивающиеся на ток, и изменяющееся электрическое поле должны быть стянуты к точке; в рассмотренном опыте Фарадея силовые линии электрического поля, охватывающие изменяющееся магнитное поле, тоже должны быть стянуты к точке. Второй шаг состоит в трактовке поля как чего-то реального. Созданное однажды электромагнитное поле существует, действует и изменяется согласно законам Максвелла.
Уравнения Максвелла описывают структуру электромагнитного поля. Ареной этих законов является все пространство, а не одни только точки, в которых находятся вещество или заряды, как это принимается для механических законов.
Вспомним, как обстояло дело в механике. Зная положение и скорость частиц в начальный момент времени, зная действующие силы, можно предвидеть всю траекторию, которую частица опишет в будущем. В теории Максвелла, если только мы знаем поле в какой-либо момент времени, мы можем вывести из уравнений, установленных этой теорией, как будет изменяться все поле в пространстве и во времени. Уравнения Максвелла позволяют нам следовать за историей поля, так же как уравнения механики позволяли следовать за историей материальных частиц.
Но имеется еще одно существенное различие между механическими законами и законами поля Максвелла. Сравнение законов тяготения Ньютона и законов поля Максвелла подчеркнет некоторые характерные черты, выраженные этими уравнениями.
С помощью законов Ньютона мы можем вывести движение Земли, зная силу, действующую между Солнцем и Землей. Эти законы связывают движение Земли с действием удаленного Солнца. И Земля, и Солнце, хотя они и далеки друг от друга, оба принимают участие в игре сил.
В теории Максвелла нет вещественных участников действия. Математические уравнения этой теории выражают законы, управляющие электромагнитным полем. Они не связывают, как это имеет место в законах Ньютона, два далеко разделенных события, они не связывают события здесь с условиями там. Поле здесь и теперь зависит от поля в непосредственном соседстве в момент, только что протекший. Уравнения позволяют нам предвидеть, что´ случится немного дальше в пространстве и немного позднее во времени, если мы знаем, что´ происходит здесь и теперь. Они позволяют нам увеличивать наши знания поля малыми шагами. Мы можем вывести то, что происходит здесь, из того, что происходит вдали, путем суммирования этих очень малых шагов. В теории же Ньютона, наоборот, допустимы только большие шаги, связывающие отдаленные события. Опыты Эрстеда и Фарадея можно рассмотреть с точки зрения теории Максвелла, но только суммируя малые шаги, каждый из которых управляется уравнениями Максвелла.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.