Иосиф Шкловский - Звезды: их рождение, жизнь и смерть Страница 25

Тут можно читать бесплатно Иосиф Шкловский - Звезды: их рождение, жизнь и смерть. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть читать онлайн бесплатно

Иосиф Шкловский - Звезды: их рождение, жизнь и смерть - читать книгу онлайн бесплатно, автор Иосиф Шкловский

 

Рис. 5.6: Распределение газово-пылевых комплексов в Галактике.  

К югу и к северу от молекулярного облака находятся яркие компактные области Н II. В области двух максимумов яркости линии СО, соответствующих самым плотным частям молекулярного облака (nH2 2 106 см-3 с массой 200M), наблюдаются источники длинноволнового инфракрасного излучения. Один из таких источников — это знаменитый инфракрасный объект Клейнмана — Лоу. Внутри таких относительно протяженных ( 1) источников длинноволнового инфракрасного излучения обнаружены «точечные», судя по спектру значительно более «горячие», источники, связанные скорее всего с протозвездными оболочками. В частности, внутри компактной инфракрасной туманности Клейнмана — Лоу находится «только что севшая» на главную последовательность звезда, причем сейчас можно наблюдать ее внутренний и наружный «коконы». Например, у яркого «точечного» источника, находящеюся внутри туманности Клейнмана — Лоу, были обнаружены инфракрасные линии водорода (серия Бреккета), доказывающие, что там имеется очень маленькая (r = 5 1014 см или 30 астрономических единиц) Н II область с плотностью ne 3 105 см-3. Почти наверняка эта «сверхкомпактная» Н II область представляет собой обращенную к звезде часть внутреннего «кокона». Внутри других инфракрасных туманностей (скорее всего — внешних «коконов») находятся менее массивные протозвезды. Сейчас уже можно утверждать, что спустя сотню тысяч лет на месте нынешнего плотного молекулярного облака в Орионе будет наблюдаться еще одна деталь находящейся в этой области неба большой ассоциации. Таким образом обосновывается картина волны сжатия вещества в газово-пылевом комплексе размером в 100 пс, распространяющейся со скоростью 10 км/с и на своем фронте стимулирующей процесс звездообразования. Первопричиной возникновения такой волны может быть, например, сильная ударная волна, образовавшаяся в межзвездной среде во время вспышки сверхновой звезды (см. § 16).

 

Рис. 5.7: Радиоизофоты линии СО в туманности Ориона.  

 

Рис. 5.8: Радиоизофоты центральной части комплекса W 3.  

 

Рис. 5.9: Радиоизофоты компактной области Н II в комплексе W 3.  

Рассмотрим теперь особенности процесса звездообразования в гигантских газово-пылевых комплексах, находящихся в спиральных рукавах. В качестве примера рассмотрим комплекс W 3 (см. рис. 2.4). Здесь насчитывается несколько компактных Н II областей, каждая из которых ионизуется своей горячей массивной звездой или протозвездой. Полная мощность теплового радиоизлучения от этого гигантского комплекса в несколько десятков раз больше, чем от комплекса в Орионе. На рис. 5.8 приведены радиоизофоты центральной части комплекса W 3, полученные на волне 6 см с рекордным угловым разрешением 2. Кресты обозначают положение инфракрасных звезд, кресты с точками — мазерных ОН и Н2О источников, а звездочки обозначают оптически наблюдаемые звезды. Изображенные на этом рисунке зоны H II окружены холодным неионизованным газом. На рис. 5.9 приведены изофоты компактной H II зоны, находящейся в W 3, полученные с очень высоким угловым разрешением (0,65, т. е. лучше, чем оптические фотографии) на волне 2 см. Линейные размеры области, наполненной ионизованным газом с плотностью 105 см-3, всего лишь около одной сотой парсека, а масса M = 4 10-3M. Этот ионизованный газ погружен в темное газово-пылевое облако («кокон»), радиус которого в 10 раз превосходит радиус находящейся внутри зоны Н II, что следует из наблюдений радиолинии СО в данной области. Крестиками на рис. 5.9 помечены находящиеся внутри компактной зоны Н II мазерные источники ОН. На рис. 5.10 приведены изофоты на волне 6 см, полученные для большей области с худшим разрешением (4). Кроме изображенной на рис. 5.9 компактной Н II области «А» видны еще по крайней мере четыре менее яркие компактные области Н II, внутри которых находятся менее массивные протозвезды.

 

Рис. 5.10: Радиоизофоты компактных областей Н II в комплексе W 3 на волне 6 см.  

Приблизительно такая же картина наблюдается во всех исследовавшихся газово-пылевых комплексах. Во всех случаях мы наблюдаем характерные комбинации компактных Н II, СО и инфракрасных источников, полностью подтверждающих картину конденсации протозвезд из газово-пылевой среды, обрисованную выше. Остается еще сказать несколько слов о месте мазерных источников ОН и Н2О в набросанной картине звездообразования. Кое-что об этом говорилось уже в конце § 4, где было обращено внимание на тесную связь между ОН мазерами I класса и компактными зонами Н II. Хороший пример такой связи изображен на рис. 5.9. Недавно установлено, что с точностью 1 мазеры ОН совпадают с компактными зонами Н II. Анализ этой связи позволяет сделать вывод, что когда размеры расширяющихся компактных зон Н II достигают 0,1 пс, около них уже нет мазерных источников ОН. Учитывая скорость расширения компактных зон Н II ( 10 км/с), можно отсюда сделать вывод, что возраст космических мазеров ОН не превышает 104 лет. Так как при достижении зоной Н II размеров 0,1 пс плотность молекулярного газа в протозвездной оболочке будет 105 см-3, естественно сделать вывод, что мазеры ОН работают при плотности 106 см-3 и температуре 100 К, причем они располагаются снаружи от ионизованного фронта. Интересно отметить, что в отличие от мазеров ОН мазеры Н2О не совпадают с компактными зонами H II. Похоже на то, что такие «водяные» мазеры ассоциируются с более ранним этапом эволюции протозвездного облака, когда компактная зона H II еще не образовалась. По-видимому, плотность газа в области генерации «водяных» мазеров 109 см-3, а температура 103 К, что соответствует внутренней части внутреннего «кокона». Возможно, мазер Н2О есть самый ранний указатель образования протозвезды из конденсирующегося протозвездного газово-пылевого облака.

Так обстоит дело с наблюдениями протозвездных оболочек на разных этапах их эволюции. Наряду с этим в настоящее время имеется наблюдательный материал для протозвезд, находящихся в стадии конвективного сжатия. Вот уже свыше 30 лет астрономам известен очень интересный класс звезд, заслуживший по имени их типичного представителя название «звёзды типа Т Тельца». Это, как правило, холодные звезды, быстро и беспорядочно меняющие свой блеск. Все говорит о том, что их атмосферы охвачены бурной конвекцией. Характерной особенностью звезд типа Т Тельца является наличие в их спектре линий поглощения лития, которого там должно быть в сотни раз больше, чем в солнечной атмосфере. Это может означать, что в недрах таких звезд еще не наступили первые ядерные реакции, ведущие к «выгоранию» легких элементов. Звезды типа Т Тельца всегда наблюдаются группами, получившими название «Т-ассоциаций». В таких ассоциациях наблюдается скопление плотных облаков газово-пылевой межзвездной среды, в которую звезды типа Т Тельца буквально погружены. Часто (но не всегда) Т-ассоциации совпадают с О-ассоциациями, т. е. группами заведомо молодых массивных горячих звезд. На диаграмме Герцшпрунга — Рессела звезды типа Т Тельца располагаются выше главной последовательности. Это вполне объяснимо, если считать их протозвездами на стадии конвективного сжатия: более массивные протозвезды, эволюционирующие в звезды О и В, достигают главной последовательности скорее, в то время как менее массивные протозвезды, наблюдаемые как объекты типа Т Тельца, эволюционируют значительно медленнее.

В спектрах звезд типа Т Тельца часто наблюдаются линии излучения водорода, ионизованного кальция и некоторых других элементов. Анализ условий образования этих линий позволяет сделать вывод, что в наружных слоях атмосфер этих звезд температура растет с высотой. Это похоже на ситуацию в верхних слоях солнечной атмосферы, где температура растет с высотой из-за нагрева механической энергией движения солнечного вещества.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.