Ричард Фейнман - 6a. Электродинамика Страница 34

Тут можно читать бесплатно Ричард Фейнман - 6a. Электродинамика. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Ричард Фейнман - 6a. Электродинамика читать онлайн бесплатно

Ричард Фейнман - 6a. Электродинамика - читать книгу онлайн бесплатно, автор Ричард Фейнман

Мне еще хотелось бы порассуждать немного о том, почему при пропорциональности импульса поля скорости мы говорили о массе. Очень просто! Ведь масса — это и есть коэффициент между импульсом и скоростью. Однако возможна и другая точка зрения. Можно говорить, что частица имеет массу, если для ускорения ее мы вынуждены прилагать какую-то силу. Посмот­рим повнимательней на то, откуда берутся силы; это может помочь нашему пониманию. Откуда мы узнаем, что здесь должно проявиться действие сил? Да просто потому, что мы доказали закон сохранения импульса для полей. Если у нас есть заряжен­ная частица и мы некоторое время «нажимаем» на нее, то у электромагнитного поля появится импульс. Каким-то образом он был передан электромагнитному полю. Следовательно, чтобы разогнать электрон, к нему нужно приложить силу, дополни­тельную к той, которая требуется механической инерцией, связанную с его электромагнитным взаимодействием. При этом должна возникнуть соответствующая обратная реакция со стороны «толкаемого» нами электрона. Но откуда берется эта сила? Картина примерно такова. Можно считать электрон за­ряженной сферой. Когда он покоится, то каждый его заряженный участок отталкивает любой другой, но все силы уравновешены попарно, так что результирующая равна нулю (фиг. 28. 3, а).

Фиг 28.3. Сила действия ускоряющегося электрона благодаря запаздыванию не равна нулю.

Под dF мы подразумеваем силу, действующую на элемент поверхности da, а под d2F — силу, действующую на элемент поверхности daa со стороны заряда, расположенного на элементе поверхности dab .

Однако при ускорении электрона силы больше не уравновеши­ваются, так как, чтобы электромагнитное влияние дошло от одного места до другого, нужно некоторое время. Например, сила, действующая на участок а (фиг. 28.3, б) со стороны участ­ка b, расположенного на противоположной стороне, зависит от положения b в запаздывающий момент. И величина и направ­ление силы определяются движением заряда. Если он ускоряет­ся, то силы, действующие на разные части электрона, могут быть такими, как это показано на фиг. 28.3, в. Теперь при сло­жении всех этих сил они не сокращаются. Для постоянной ско­рости эти силы уравновешивались бы, хотя на первый взгляд кажется, что даже при равномерном движении запаздывание приведет к неуравновешенным силам. Тем не менее оказывается, что в тех случаях, когда электрон не ускоряется, равнодейст­вующая сила равна нулю. Если же мы рассмотрим силы между различными частями ускоряющегося электрона, то действие и противодействие не компенсируют в точности друг друга и электрон действует сам на себя, стараясь уменьшить ускорение. Он тянет сам себя «за шиворот» назад.

Можно, хотя и не легко, вычислить эту силу самодействия, однако здесь мы не будем заниматься такими трудоемкими рас­четами. Я просто скажу вам, что получается в специальном сравнительно простом случае движения в одном измерении, скажем вдоль оси х. Самодействие в этом случае можно записать в виде ряда. Первый член этого ряда зависит от ускорений х, следующий — пропорционален х и т. д.

Так что в результате

(28.9)

где a и g — числовые коэффициенты порядка единицы. Коэффи­циент ос при слагаемом x зависит от предположенного распреде­ления зарядов; если заряды равномерно распределены по сфере, то a=2/3. Таким образом, слагаемое, пропорциональное ускоре­нию, изменяется обратно пропорционально радиусу электрона а, что в точности согласуется с величиной, полученной для mэм в (28.4). Если взять другое распределение, то а изменится, но в точности так же изменится и величина 2/3 в (28.4). Слагаемое с х не зависит ни от радиуса а, ни от предположенного распре­деления заряда; коэффициент при нем всегда равен 2/3. Следую­щее слагаемое пропорционально радиусу а и коэффициент g при нем определяется распределением заряда. Обратите внима­ние, что если устремить радиус электрона к нулю, то последнее слагаемое (равно как и все высшие члены) обратится в нуль, второе остается постоянным, но первое — электромагнитная масса — становится бесконечным. Видно, что бесконечность возникает из-за действия одной части электрона на другую; по-видимому, мы допустили глупость — возможность «точеч­ного» электрона действовать на самого себя.

§ 5. Попытки изменения теории Максвелла

Теперь мне бы хотелось обсудить, как можно изменить электродинамику Максвелла, но изменить так, чтобы сохранить понятие простого точечного заряда. В этом направлении было сделано немало попыток, а некоторые теории сумели даже так представить дело, что вся масса электрона оказалась полностью электромагнитной. Однако ни одной из этих теорий не суждено было выжить. И все же интересно обсудить некоторые из пред­ложенных возможностей хотя бы для того, чтобы оценить борь­бу человеческого разума.

Наша теория электромагнетизма началась с разговоров о взаимодействии одного заряда с другим. Затем мы построили теорию этих взаимодействующих зарядов и закончили наше изу­чение теорией поля. Мы настолько уверовали в нее, что пытались с ее помощью определить, как одна часть электрона действует на другую. Все трудности, возможно, происходят из-за того, что электрон не действует сам на себя; экстраполяция закона вза­имодействия между отдельными электронами на взаимодействие электрона самого с собой, возможно, ничем не оправдана. По­этому некоторые из предложенных теорий совсем исключают возможность самодействия электрона. Из-за этого в них уже не возникает бесконечностей. И никакой электромагнитной массы при этом у частиц нет, а ее масса снова полностью механическая. Однако в такой теории возникают новые трудности.

Нужно сразу же вам сказать, что такие теории требуют из­менения и понятий электромагнитного поля. Как вы помните, мы говорили, что сила, действующая на частицу в любой точке, определяется просто двумя величинами: Е и В. Если мы отказываемся от идеи самодействия, то это утверждение становится уже несправедливым, ибо силы, действующие на электрон в некотором месте, больше не определяются полями Е и В, а только теми их частями, которые создаются другими зарядами. Так что мы всегда должны помнить о том, какие поля Е и В создает тот заряд, для которого вычисляется действующая сила, а какие — все остальные заряды. Это делает теорию гораздо более запутанной, хотя и позволяет избежать трудностей с бесконечностями.

Итак, если нам очень хочется, мы можем выбросить весь набор сил в уравнении (28.9), приговаривая при этом, что такое явление, как действие электрона на себя, отсутствует. Но вместе с водой мы выплескиваем и ребенка! Ведь второе-то слагаемое в (28.9), слагаемое с х, совершенно необходимо. Эта сила приво­дит к вполне определенному эффекту. Если вы ее выбросите — беды не миновать. Когда вы разгоняете заряд, он излучает элек­тромагнитные волны, т. е. теряет энергию. Поэтому ускорение заряда требует большей силы, чем ускорение нейтрального объекта той же массы; в противном случае энергия не будет со­храняться. Скорость, с которой мы затрачиваем работу на уско­рение заряда, должна быть равна скорости потери энергии на излучение. Мы уже говорили об этом эффекте; он был назван радиационным сопротивлением. Снова перед нами вопрос: от­куда берутся те дополнительные силы, на преодоление которых затрачивается эта работа? Когда излучает большая антенна, то эти силы возникают под влиянием токов одной ее части на токи в другой. Но у отдельного ускоряющегося электрона, излуча­ющего в пустое пространство, возможен только один источник таких сил — действие одной части электрона на другую.

В гл. 32 (вып. 3) мы обнаружили, что осциллирующий заряд излучает энергию со скоростью

(28.10)

Давайте посмотрим, какая мощность необходима для преодоле­ния силы самодействия (28.9). Мощность, как известно, равна силе, умноженной на скорость, т. е. Fx:

(28.11)

Первый член пропорционален dx2/dt и поэтому соответствует скорости изменения кинетической энергии 1/2mv2, связанной с электромагнитной массой. А второй соответствует излучению мощности (28.10). Однако он отличается от (28.10). Разница состоит в том, что (28.11) справедливо в общем случае, тогда как (28.10) верно только для осциллирующего заряда. Мы можем доказать, что эти два выражения для периодического движения заряда эквивалентны. Перепишем для этого второй член выра­жения (28.11) в виде

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.