Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Страница 37

Тут можно читать бесплатно Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ. Жанр: Научные и научно-популярные книги / Физика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ читать онлайн бесплатно

Дэйв Голдберг - ВСЕЛЕННАЯ. РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ - читать книгу онлайн бесплатно, автор Дэйв Голдберг

По-прежнему сложно? А если так: «Тамошняя масса влияет на здешнюю инерцию»?

Ну и что? Конечно, далекая материя влияет на движение тел поблизости от нас. Именно это мы называем гравитацией. Но Мах говорил не об этом, и Эйнштейн усмотрел в его словах не это. Мах говорил, что если мы сравним нашу материю с далекими звездами, то уж как-нибудь сообразим, движемся мы или нет — по крайней мере ускоряемся мы или нет.

Принцип Маха в основном и вдохновил Эйнштейна на создание общей теории относительности. Основная идея заключалась в том, что «далекие звезды» в среднем можно считать неподвижными, и мы вправе сказать, что что-то движется или, если уж на то пошло, вращается, только относительно неподвижных звезд.

Верен ли принцип Маха?

Не обязательно. С математической точки зрения это решение уравнений Эйнштейна для пустого пространства. То есть для пространства, где материя как таковая отсутствует. Очевидно, что в таком случае не может быть и речи ни о каких далеких звездах, однако эйнштейновская специальная теория относительности все равно предсказывает, что если вы вдруг окажетесь в этой пустой вселенной, то «почувствуете», что вращаетесь.

Но ведь абсолютно пустая вселенная — это не правило, а исключение. В нашей Вселенной есть вещество. Общая теория относительности инкорпорирует во Вселенную материю. Это и есть то «свертывание» пространства, которое ощущается где угодно, в том числе и здесь.

Сразу после того, как Эйнштейн выдвинул общую теорию относительности, Джозеф Лензе и ХансТирринг из Венского университета заметили, что если взять достаточно массивное тело, скажем, черную дыру, и привести это тело во вращение, то пространство вокруг черной дырытоже потянется за ней. Иначе говоря, если вы попытаетесь стоять на месте, покажется, будто вы вращаетесь. И это не просто догадка. С тех пор было запущено множество спутников, которые зарегистрировали вращение пространства, вызванное вращением Земли и Марса.

Мы хотим сказать, что на крупных масштабах получается, будто именно материя и «создает» пространство, даже если локальное пространство выглядит так, будто в нем ничего и нет.

IV. Насколько пусто пространство?

На последних нескольких страницах нас увело в сторону эзотерики — мы слишком много рассуждали о природе пространства и обо всем таком прочем, а теперь пора перейти к более конкретным разговорам. Так вот, давайте договоримся: если вы согласитесь, что галактики во Вселенной в общем и целом никуда не движутся, а Вселенная вокруг них расширяется, мы согласимся» что можно иногда предаваться невинным фантазиям, что мы-де находимся в центре Вселенной. Для подтверждения согласия как следует встряхните эту книжку.

Мы сочтем, что вы тем самым сказали «да».

И даже можем проделать кое-какие корректные физические выкладки на основе «центропупист- ской» модели. Начнем с основного вопроса — замедляется расширение Вселенной или ускоряется?

Посмотрите на это с точки зрения Вселенной и постарайтесь проделать следующий эксперимент.

1.   Выйдите на улицу с футбольным мячом.

2.   Бросьте его вертикально вверх.

3.   Быстренько отойдите в сторонку.

Сколько бы вы ни повторяли эксперимент, происходит одна старая история — что взлетает вверх, то падает вниз.

Разумеётся, причиной того, что мы сумели построить ракеты, которые летают на Марс, стало следующее: если запустить мячик или ракету достаточно быстро, они вырвутся из гравитационного поля Земли. Скорость, с которой можно улететь с Земли, составляет примерно 40 тысяч километров в час — это называется «вторая космическая скорость». Ракеты взлетают в космос, поскольку двигаются быстрее.

А на Луне вторая космическая скорость составляет чуть больше 8000 километров в час. То есть если бы вы стояли на Луне и запустили сверхскоростной мячик со скоростью 16 тысяч километров в час, то обнаружили бы, что он вышел в открытый космос. А если бросить мяч с той же скоростью с Земли, то он в конце концов с размаху шлепнется обратно. Еще один пример для наглядности: вторая космическая скорость у Деймоса — спутника Марса — около 21 километра в час. Даже мы могли бы запустить мяч с Деймоса в открытый космос! Ну, наверное.

Так чем же Деймос так отличается от Земли? Массой. У Земли масса гораздо больше, а значит, больше и гравитация. Чем меньше масса, тем меньше сила гравитации, которая притягивает мяч обратно к планете (планетоиду, спутнику и т.п.), вот почему вторая космическая скорость у Деймоса та-

кая маленькая. Для массивных предметов вроде галактик это тоже справедливо.

Если бы Вселенная была совершенно пуста (а это, к счастью для нас, совсем не так), то она бы расширялась вечно с абсолютно неограниченной скоростью. Не было бы материи, которая бы ее затормозила. Если бы у нас была настолько пустая вселенная, а мы поместили бы в нее немного вещества, то расширение бы немного замедлилось. Не забывайте: материя влияет на пространство, так что если бы мы поместили в эту вселенную целую кучу вещества, то она бы впоследствии схлопнулась.

Линия, отделяющая вселенную, которой суждено расширяться бесконечно, от вселенной, которой суждено схлопнуться, называется критической плотностью вселенной» и она гораздо ниже, чем вы думаете.

Обычно представление о том, насколько плотно космос набит материей, сильно преувеличено, поэтому, вероятно» нужно устроить проверку реальностью, и начнем мы с того, что происходит у нас по соседству. Вспомните сцену из «Звездных войн», когда Хан Соло на «Тысячелетнем Соколе» пробивается сквозь пояс астероидов. Тогда звездолет едва не развалился. Как вам, наверное, известно, у нашей Солнечной системы тоже есть пояс астероидов — между орбитами Марса и Юпитера (соответственно четвертой и пятой планетами, считая от Солнца). Что же произойдет, если вы преисполнитесь неблагоразумной отваги и рванете на своем звездолете к Юпитеру?

Ничего особенного.

Хотя астрономы не уверены, сколько в точности там астероидов, разумная оценка — 10 миллионов — показывает, что среднее расстояние между этими каменюками — больше полутора миллионов километров. Если вы не представляете себе, сколько это, поясним: полтора миллиона километров — это примерно в четыре раза больше, чем до Луны, а настолько далеко забирались пока едва ли пара десятков человек.

Если мы покинем Солнечную систему и двинемся к другим звездам, окажется, что от ближайшей звезды Проксима Центавра нас отделяет расстояние в четыре световых года, а по пути все довольно пусто. В среднем каждый кубический сантиметр (средний размер игрального кубика) межзвездного пространства содержит всего один атом водорода. Для сравнения — это примерно в 10 раз менее плотно, чем земной воздух, и примерно в миллион раз менее плотно, чем самый-самый чистый искусственный вакуум, которого мы способны добиться в лаборатории.

Пространство между галактиками, даже если бы Вселенная обладала критической плотностью, ещё в миллион раз менее плотно. Это значит, что на каждый кубометр пространства (это примерно объем вашего холодильника) приходится всего пять атомов водорода.

Вы, конечно, подозревали, что в космическом пространстве пусто. Потому-то оно и называется пространством. В некотором смысле.

Поскольку астрофизики не любят, когда у них в распоряжении остается так мало атомов, нас интересует, в сущности, только то, обладает Вселенная плотностью меньше критической или больше, поэтому мы определяем соотношение. Это соотношение сравнивает количество материи (любой материи) во Вселенной с количеством материи, которое мы ожидали бы при критической плотности. Это соотношение мы называем:

Ωм.

Если вы хотите рассказать маме, чему вас научила эта книга[90], а картинку по телефону не покажешь или просто бумажки под рукой нет, имейте в виду, что это называется «омега материи».

А сейчас мы испортим весь сюрприз и скажем, что по самым точным оценкам Ωм составляет 28% (плюс-минус, крохотулечная погрешность) материи — именно такая доля вещества во Вселенной заставит ее схлопнуться. По мере расширения Вселенной материя в ней становится все более диффузной, так что с течением времени Вселенная будет казаться все более пустой. А значит, плотность Вселенной будет уменьшаться (пространства становится больше, а новой материи не вырабатывается), поэтому соотношение тоже будет уменьшаться.

Это очень важное число, особенно для чокнутых астрономов, и за последние два десятка лет основные усилия классической космологии были направлены на то, чтобы получить это число и еще несколько других[91], из которых можно вывести возраст, судьбу, будущее и прошлое Вселенной. Но это число особенно важно, поскольку оно говорит нам, собирается ли Вселенная снова впасть в коллапс или будет расширяться бесконечно. Чтобы вычислить это соотношение, нам нужно измерить, сколько вещества нас окружает, и поэтому главный вопрос звучит так: как нам взвесить Вселенную?

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.