Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса Страница 4
Брайан Грин - Скрытая реальность. Параллельные миры и глубинные законы космоса читать онлайн бесплатно
Где-то в отдалённом уголке бесконечного космоса есть галактика, которая выглядит в точности как Млечный Путь, в которой есть солнечная система, как две капли воды похожая на нашу, с планетой, которая является вылитой копией Земли, на которой стоит дом, неотличимый от вашего, в котором живёт кто-то, абсолютно похожий на вас, и он прямо сейчас читает точно такую же книгу и представляет себе вас, затерянного где-то в далёкой галактике и только что добравшегося до конца этой фразы. И такая копия не одна. В бесконечной Вселенной их бесконечно много. В каких-то ваш двойник сейчас читает это предложение вместе с вами. В других он перескочил вперёд или же отложил книгу, чтобы подкрепиться. Ещё где-то жизнь у него сложилась далеко не так удачно, и вы вряд ли захотели бы встретиться с ним в тёмном переулке.
И вы никогда не встретитесь. Эти копии обитают в настолько далёких друг от друга областях, что даже у луча света, начавшего своё путешествие в момент Большого взрыва, не хватило бы времени пересечь разделяющее их пространство. Но даже не имея возможности наблюдать эти далёкие области, мы понимаем: из ключевых физических принципов вытекает, что бесконечно большой космос является вместилищем для бесконечного числа параллельных миров — какие-то из них идентичны нашему, какие-то отличаются, а какие-то вовсе на него не похожи.
На пути к этим параллельным мирам мы должны сначала в общих чертах выстроить каркас космологии — научной теории о происхождении и эволюции космоса как целого.
Приступим.
Отец Большого взрыва
«Ваши математические выкладки корректны, но ваши физические выводы чудовищны». Сольвеевский конгресс по физике 1927 года был в самом разгаре, когда этими словами Альберт Эйнштейн встретил сообщение бельгийца Жоржа Леметра о том, что уравнения общей теории относительности, которые Эйнштейн опубликовал десятилетием раньше, влекут за собой драматическую перекройку истории творения. Согласно вычислениям Леметра, начало Вселенной положила крошечная пылинка немыслимой плотности («первородный атом», как он её назвал), которая на протяжении долгого времени разрасталась, чтобы превратиться в наблюдаемый нами космос.
На фоне десятков именитых физиков, которые, вместе с Эйнштейном, собрались на неделю в брюссельском отеле «Метрополь» для интенсивных дебатов о квантовой теории, Леметр был довольно необычной фигурой. К 1923 году он не только закончил работу над докторской диссертацией, но также завершил своё обучение в семинарии Сен-Ромбо и был посвящён в духовный сан ордена иезуитов. Во время перерыва между выступлениями Леметр, в пасторском воротнике, подошёл к человеку, чьи уравнения, как он считал, были основой новой научной теории происхождения космоса. Эйнштейн знал о теории Леметра, несколькими месяцами раньше прочёл его статью на эту тему и не смог найти никакого изъяна в его манипуляциях с уравнениями общей теории относительности. На самом деле Леметр был не первым, кто показал Эйнштейну этот результат. В 1921 году русский математик и метеоролог Александр Фридман нашёл класс решений уравнений Эйнштейна, описывающий вселенную, растущую благодаря расширению пространства. Вначале Эйнштейн отверг эти решения, считая их ошибочными. Позже он признал, что был не прав, и взял свои слова назад. Однако он не желал быть заложником математиков и попытался исправить свои уравнения, руководствуясь интуитивным представлением о том, каким должен быть космос, и опираясь на свою глубоко укоренившуюся веру в то, что вселенная вечна и на больших масштабах статична и неизменна. Вселенная, — убеждал Леметра Эйнштейн, — не расширяется и никогда не расширялась.
Шестью годами позже на семинаре в обсерватории Маунт-Вильсон Эйнштейн внимательно выслушал, как Леметр излагает более подробный вариант своей теории о том, что Вселенная началась с первичной вспышки, а галактики были тлеющими углями этой вспышки в разливающемся море пространства. Когда семинар подошёл к концу, Эйнштейн встал и объявил, что теория Леметра — это «самое прекрасное и убедительное объяснение творения», которое ему когда-либо доводилось слышать.{2} Самый знаменитый физик склонился к тому, чтобы изменить своё мнение о самой интригующей тайне. Хотя широкой публике имя Леметра ни о чём не говорит, среди учёных он известен как отец Большого взрыва.
Общая теория относительности
Космологические теории, разработанные Фридманом и Леметром, опираются на работу Эйнштейна, отправленную в немецкий журнал «Annalen der Physik» 25 ноября 1915 года. Эта статья подводила итог примерно десятилетней математической одиссеи, а представленному в ней результату — общей теории относительности — суждено было стать наиболее целостным научным достижением Эйнштейна, влекущим за собой чрезвычайно глубокие следствия. В своей теории Эйнштейн задействовал элегантный геометрический язык, чтобы переосмыслить наши представления о гравитации. Если вы уже знакомы с основными положениями этой теории и её космологическими следствиями, можете спокойно пропустить три следующих раздела. Если же вам нужно освежить в памяти основные моменты, давайте вместе пойдём дальше.
Эйнштейн начал работу над общей теорией относительности примерно в 1907 году — в то время, когда большинство учёных считали, что гравитация давным-давно получила объяснение в трудах Исаака Ньютона. Во всём мире студентов год за годом учили, что в конце XVII века Ньютон сформулировал так называемый закон всемирного тяготения, который стал первым математическим описанием этой наиболее известной силы природы. Закон Ньютона настолько точен, что инженеры НАСА до сих пор используют его при расчёте траекторий космических кораблей, а астрономы с его помощью предсказывают поведение комет, звёзд и даже целых галактик.{3}
Эта поразительная эффективность тем более стоит упоминания, что, как осознал в начале XX века Эйнштейн, ньютоновский закон тяготения содержит глубокий изъян. Обманчиво наивный вопрос, который задал себе Эйнштейн, обнажает это со всей очевидностью: как действует гравитация? Каким образом, к примеру, Солнце сквозь 150 миллионов километров практически пустого пространства дотягивается до Земли, чтобы повлиять на её движение? Они не связаны друг с другом никакой верёвкой, их не соединяет никакая цепь — так посредством чего распространяется гравитационное влияние?
Публикуя в 1687 году свои «Математические начала натуральной философии», Ньютон отдавал себе отчёт в важности этого вопроса, но признавал, что закон всемирного тяготения обходит его тревожным молчанием. Ньютон был уверен, что должно быть нечто, передающее гравитационное воздействие от места к месту, но не мог определённо сказать, что это. В «Началах» он иронично оставил этот вопрос «на усмотрение читателя» — и на протяжении более чем двух столетий те, кто читал эти бросающие вызов слова, просто продолжали чтение дальше. Эйнштейн не смог так поступить.
Добрую половину десятилетия Эйнштейн был занят поисками механизма, лежащего в основе тяготения; в 1915 году он предложил ответ. Хотя этот ответ опирался на изощрённую математику и требовал невиданных в истории физики концептуальных пируэтов, ему был присущ тот же дух простоты, что и исходному вопросу. Посредством какого процесса гравитация распространяет своё влияние в пустом пространстве? Кажется, что пустота пустого пространства оставляет нас с пустыми руками. Однако на самом деле в пустом пространстве всё же кое-что есть: само пространство. Это подтолкнуло Эйнштейна к мысли о том, что пространство как таковое может быть посредником, передающим гравитационные силы.
Идея состоит в следующем. Представьте себе мраморный шарик, который катится по большому металлическому столу. Поскольку поверхность стола плоская, шарик будет катиться по прямой линии. Но если стол будет внезапно охвачен огнём, который заставит его вздуваться и изгибаться, траектория шарика изменится, потому что его будет направлять скрученная и вздыбившаяся поверхность стола. Эйнштейн утверждал, что сходную идею можно применить к структуре пространства. Совершенно пустое пространство напоминает плоский стол — оно позволяет объектам беспрепятственно двигаться по прямой. Но присутствие массивных тел влияет на форму пространства, подобно тому как жар пламени влияет на поверхность стола. Солнце, например, создаёт поблизости от себя изгиб, похожий на пузырь, вздувшийся на раскалённом столе. И так же как искривлённая поверхность стола заставляет шарик двигаться по кривой, искривлённая форма пространства вокруг Солнца ведёт Землю и другие планеты по их орбитам.
В этом кратком описании опущены некоторые существенные детали. Искривляется не только пространство, но и время (это называется кривизной пространства-времени); сила притяжения Земли помогает столу влиять на шарик, поскольку прижимает его к поверхности стола (Эйнштейн отстаивал идею, что искривлениям в пространстве и времени не нужен помощник, потому что они сами и есть гравитация); пространство трёхмерно, и когда оно искривляется, то становится искривлённым со всех сторон вокруг объекта, а не только «под» ним, как в аналогии со столом. Тем не менее метафора искривлённого стола отражает суть того, что предложил Эйнштейн. До Эйнштейна гравитация была таинственной силой, которая каким-то образом передаётся через пространство от одного тела к другому. После Эйнштейна под гравитацией стали понимать искажения окружающего пространства, создаваемые одним объектом и направляющие движение других. В соответствии с этой идеей вы здесь и сейчас прижаты к полу, потому что ваше тело стремится соскользнуть в пространственное (на самом деле пространственно-временное) углубление, созданное Землёй.[1]
Жалоба
Напишите нам, и мы в срочном порядке примем меры.