Дэйв Голдберг - Вселенная. Руководство по эксплуатации Страница 4
Дэйв Голдберг - Вселенная. Руководство по эксплуатации читать онлайн бесплатно
Разве такое может быть?!
Чтобы это объяснить, надо поближе познакомиться с героем физической науки, чемпионом мира в весе фотона[11] — с самим Альбертом Эйнштейном.
II. С какой скоростью летит луч света, если бежишь рядом с ним?
Когда Эйнштейн в 1905 году обнародовал принципы специальной теории относительности, он сделал два простых предположения.
1. Как и Галилей, он предположил, что если двигаться равномерно и прямолинейно, можно проделывать какие хочешь эксперименты, и их результаты будут неотличимы от результатов таких же экспериментов в неподвижном положении.
(Ну, не совсем. Юристы советуют настаивать на том, что сила тяжести придает ускорение, а специальная теория относительности предполагает, что никаких ускорений нет. Есть определенные поправки, учитывающие силу тяжести, но в данном случае мы вправе преспокойно их проигнорировать. Поправка на силу тяжести в условиях Земли крайне, крайне мала в сравнении с поправкой на краю черной дыры, где без нее невозможно сделать осмысленные физические выводы.)
2. В отличие от Ньютона, Эйнштейн предположил, что все наблюдатели оценивают скорость света в пустом пространстве одинаково, независимо от того, движутся ли они. В нашем примере Рыжий швырял узелок и измерял его скорость, деля длину вагона на время, за которое узелок долетает до дальней стенки. Пачкуля сидел возле рельсов и смотрел, как поезд и узелок пролетают мимо, а поэтому видел, что узелок за то, же время пролетел дальше (вдоль вагона и вдоль того участка земли, который вагон за это время проехал). Пачкуля видел, что узелок двигался быстрее, чем наблюдал Рыжий.
Теперь рассмотрим тот же опыт с лазерной указкой. Если Эйнштейн был прав (а опыты Майкельсона и Морли еще за два десятка лет до него доказали, что так и есть), значит, Рыжий измерит, что лазерный луч движется со скоростью с, и Пачкуля намеряет ту же самую скорость.
Большинство физиков глазом не моргнув соглашаются, что с — константа, и пользуются ею направо и налево. В частности; они беззастенчиво эксплуатируют с, зачастую выражая расстояния через время, за которые свет покроет эти расстояния. Например, световая секунда — это около 300 тысяч километров, то есть примерно половина расстояния до Луны. Естественно, чтобы покрыть расстояние в одну световую секунду, свету требуется одна секунда. Астрономы чаще пользуются термином «световой год» — это 9 460 528 177 426,82 километра, примерно четверть расстояния до ближайшей звезды.
Теперь давайте сделаем предыдущий пример еще более фантастическим и подарим нашему бродячему физику межгалактический товарный вагон. Длиной вагон будет в одну световую секунду, и у Рыжего появляется не только уйма места, чтобы хорошенько потянуться после сладкого сна, но и возможность снова провести эксперимент с лазером. Он стреляет из лазерной пушки с одного конца вагона, и, по его соображениям, лазеру требуется одна секунда, чтобы пролететь вагон из конца в конец. Иначе ведь и быть не может — ведь свет движется со скоростью света (еще бы)!
Однако Пачкуля наблюдает лазерный луч в движущемся поезде и говорит (справедливо), что пока луч летел, передняя стенка вагона тоже двигалась, а следовательно, согласно Пачкуле, луч пролетел дальше, чем по расчетам Рыжего. То есть Пачкуля обнаруживает, что луч пролетел всего 1,5 световые секунды. Поскольку свет должен двигаться со скоростью света, Пачкуля делает вывод, что вспышка света добиралась от лазера до цели 1,5 секунды.
Еще раз: Рыжий говорит, что определенная последовательность событий (лазер испускает луч, а затем луч достигает цели) заняла одну секунду, а Пачкуля говорит, что та же последовательность событий заняла больше времени. У обоих есть замечательные сверхточные часы, сделанные в одном и том же межгалактическом депо для бродячих физиков. Оба проделали все измерения и вычисления одинаково точно. Кто прав?
Оба[12].
Нет, правда. Если скорость света одинакова для Рыжего и Пачкули, значит, Пачкуля должен объяснять то, что он наблюдает, тем, что у него спешат часы — или что у Рыжего часы отстают. Самое непостижимое, что отстают все часы в поезде Рыжего. Пачкуля видит, что маятники качаются медленно, часы тикают медленно, и даже сердце Рыжего бьется медленнее обычного (если есть чем это измерить).
Это общий закон. Когда вы видите, как мимо кто-то проносится, имейте в виду, что, с вашей точки зрения, часы у них будут идти медленнее, просто у вас нет достаточно точных часов, чтобы это доказать. Если вы поднимете голову и увидите, что над вами летит самолет со скоростью около 1000 километров в час, а зрение у вас, предположим, настолько острое, что вы разглядите часы пилота, то вы увидите, что его часы идут медленнее ваших, но всего лишь на одну десятитриллионную долю! Иначе говоря, если бы пилот летел сто лет, к концу этого срока он был бы моложе, чем ему было бы положено, на целую секунду. Так что хотя этот закон (закон замедления времени) действует всегда, на самом деле в обычной жизни вы его никогда не заметите.
Замедление времени начинает сказываться в полной мере, только когда движешься со скоростью, близкой к скорости света. Приводить формулу мы не станем, так что поверьте нам на слово, что мы все подсчитали точно. Если поезд едет со скоростью в половину скорости света, то за каждую секунду на часах Рыжего проходит 1,15 секунды на часах Пачкули. При 90 % скорости света на каждую секунду Рыжего Пачкуля насчитает 2,3 секунды. А при 99 % скорости света соотношение станет 7:1. И чем ближе скорость приближается к с, тем больше это соотношение[13].
Когда поезд разгоняется до с, фактор замедления времени становится бесконечным, что и служит лишним подтверждением, что путешествовать со скоростью света невозможно.
И дело не только во времени. Пространство ведет себя ничуть не лучше. Давайте представим себе, что Рыжий идет по вагону по направлению к ближайшей станции со скоростью, представляющей собой заметную долю скорости света. Представим себе также, что Пачкуля устроился вздремнуть на этой станции. Так вот, с собственной точки зрения Рыжий проходит это расстояние за более короткое время, чем с точки зрения Пачкули. Поскольку оба они согласны, что поезд приближается к станции с одной и той же скоростью, Рыжий, должно быть, считает, что общее расстояние до станции короче.
Время и пространство на самом деле зависят от того, как вы двигаетесь. Это не оптическая иллюзия, не психологический парадокс — так устроена Вселенная.
III. Если летишь в звездолете со скоростью, близкой к скорости света, какие ужасы ждут тебя по возвращении?
Казалось бы, это пустое любопытство, однако ученые нашли способ провести интересные исследования на основе этого феномена. В качестве примера грандиозных открытий, касающихся устройства Вселенной, приведем скромный мюон. Никогда о таком не слышали? Не ваша вина. Если разживетесь мюоном, дорожите временем, которое вы сможете провести в его обществе, поскольку в среднем мюоны живут около миллионной доли секунды (за это время луч света проходит меньше километра, а актерская карьера рэпера по имени Ванилла Айс достигает пика и завершается), а затем они распадаются на что-то совершенно другое.
Учитывая то, откуда они берутся и как долго пребывают с нами, нельзя сказать, чтобы мюонов было так уж много. Формируются они так: сначала космические лучи входят в верхние слои атмосферы и создают частицы под названием пионы (не путать с садовыми цветами), которые живут еще меньше и распадаются на мюоны. Все это происходит примерно в 15 километрах над поверхностью Земли. Поскольку двигаться быстрее света невозможно, а ближайшие мюоны пробегают за свою жизнь меньше километра, здравый смысл подсказывает, что до Земли они не добираются.
Здравый смысл снова вас обманывает[14].
Энергия мюонов так высока, что многие из них двигаются со скоростью 99,999 % скорости света, а значит, что для нас, наблюдателей, стоящих на земле, «часы» внутри мюонов — то самое, что подсказывает им, когда пора распасться, замедляются раз в 200 или около того. Вместо того чтобы до распада пролететь меньше километра, они способны до распада пробежать почти 200 километров — а этого с избытком хватает, чтобы достичь Земли.
Быть может, более понятным примером станет так называемый парадокс близнецов. Так вот, позвольте представить вам близняшек Эмили и Бонни, которым 30 лет. Эмили решает отправиться к далекой звезде, садится в звездолет и улетает со скоростью 99 % скорости света. Год спустя ей становится скучно и одиноко, и она возвращается на Землю — опять же со скоростью 99 % от с.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.