Ричард Фейнман - 3a. Излучение. Волны. Кванты Страница 4

Тут можно читать бесплатно Ричард Фейнман - 3a. Излучение. Волны. Кванты. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Ричард Фейнман - 3a. Излучение. Волны. Кванты читать онлайн бесплатно

Ричард Фейнман - 3a. Излучение. Волны. Кванты - читать книгу онлайн бесплатно, автор Ричард Фейнман

а — падающая волна поляризована по нормали к плоскости страницы; б — падающая волна поляризована в направ­лении, указанном пунктирной стрелкой.

На фиг. 33.6, б показана подобная же ситуация, но в предполо­жении, что падающий луч поляризован в плоскости рисунка. Здесь через В и А обозначены соответственно амплитуды отра­женной и преломленной волн.

Мы хотим вычислить интенсивности отраженного луча в обо­их случаях, приведенных на фиг. 33.6. Как мы уже знаем, в слу­чае, показанном на фиг. 33.6, б, отраженной волны не возникает, если угол между отраженным и преломленным лучами прямой, но нам хотелось бы получить количественный результат — точную формулу для амплитуд В и b как функций угла паде­ния i. Полезно усвоить следующий принцип. Индуцированные в стекле токи генерируют две волны. Прежде всего они создают волну отражения. Далее, если бы в стекле токов не было, падающая волна прошла бы его насквозь, не меняя направле­ния. Вспомним, что все заряды во Вселенной создают некое результирующее поле. Источник, создавший падающий пучок, дает поле единичной амплитуды, которое само по себе должно было бы проходить внутрь стекла по пунктирной линии (см. фиг. 33.6). Но это поле внутри стекла не наблюдается, а, следовательно, токи, возбуждаемые в стекле, должны излучать поле с амплитудой -1 вдоль той же пунктирной линии. Это позволяет вычислить амплитуды преломленных волн а и А.

Из фиг. 33.6, а видно, что поле с амплитудой b создается движением зарядов стекла, а внутри стекла это же движение дает поле с амплитудой а; следовательно, амплитуда b пропор­циональна амплитуде а. Далее, если отвлечься от направления поляризации, можно было бы предположить, что отношение В/А равно отношению b/a, так как обе схемы на фиг. 33.6 можно считать одинаковыми. На самом деле это не совсем правильно, потому что на фиг. 33.6, б в отличие от ситуации, изображенной на фиг. 33.6, а, направления поляризаций не параллельны друг другу. В создании амплитуды В эффективно участвует только компонента А, параллельная В, т. е. Acos(i+r). Правильное соотношение пропорциональности выглядит поэтому так:

(33.1)

Теперь немного схитрим. Как мы знаем, на обоих рисунках фиг. 33.6 электрическое поле в стекле вызывает движение зарядов, которое генерирует поле с амплитудой, равной -1, поля­ризованное точно так же, как и в падающем луче, и распростра­няющееся вдоль пунктирной линии. Но из фиг. 33.6, б видно, что только перпендикулярная пунктирной линии компонента А дает полю необходимую поляризацию, тогда как на фиг. 33.6,а в создании поля на пунктирной линии эффективно участвует вся амплитуда а, поскольку ее поляризация параллельна поля­ризации поля с амплитудой -1. Следовательно, справедливо соотношение

(33.2)

так как обе амплитуды в левой части (33.2) создают волны с амплитудой -1.

Разделив (33.1) на (33.2), получаем

(33.3)

Проверим правильность этого результата на уже известном нам факте. Положив (i+r) =90°, из (33.3) получим B=0, что и было найдено в свое время Брюстером; таким образом, наш результат по крайней мере не содержит очевидной ошибки.

По предположению падающая волна имеет единичную амп­литуду; тогда |B|2/12 есть коэффициент отражения лучей, поля­ризованных в плоскости падения, а |b|2/12 — коэффициент отражения лучей, поляризованных перпендикулярно плоскости падения. Отношение этих двух коэффициентов определяется с помощью формулы (33.3).

А теперь сотворим чудо и вычислим не только отношение, но и каждый коэффициент |В|2 и |b|2 в отдельности! Из закона сохранения энергии вытекает, что энергия преломленной волны должна быть равна энергии падающей волны минус энергия отраженной волны, т. е. 1-|В|2 в одном случае и 1-|b|2 —в другом. Более того, энергия света, прошедшего внутрь стекла в случае, показанном на фиг. 33.6, а, и такая же энергия в слу­чае фиг. 33.6, б относятся как квадраты амплитуд преломленных волн: |A|2/|а|2. Возникает вопрос, возможно ли вычислить энергию волны в стекле, если кроме энергии электрического поля, вообще говоря, имеется и энергия движения атомов. Однако ясно, что любой вклад в полную энергию должен быть пропорционален квадрату амплитуды электрического поля. Следовательно,

(33.4)

Подставим сюда соотношение (33.2) и исключим A/a в на­писанном выражении, а величину В выразим через b с по­мощью формулы (33.3):

(33.5)

Здесь неизвестной величиной остается только b. Разрешая уравнение относительно |b|2, получаем

(33.6)

и, воспользовавшись (33.3), находим

(33.7)

Таким образом, мы нашли коэффициент отражения |b|2 для падающей волны, поляризованной перпендикулярно плоскости падения, и коэффициент отражения |B|2 для волны, поляризо­ванной в плоскости падения!

Используя подобные приемы доказательства, можно пойти дальше и вывести, что b действительно. Для доказательства рассмотрим случай, когда свет приходит одновременно с обеих сторон поверхности стекла (ситуация, трудно осуществимая на опыте, но забавная в теоретическом отношении). Анализируя этот общий случай, можно убедиться в действительности вели­чины b, откуда следует, что b=±sin(i-r)/sin(i+r). Если взять очень тонкий слой, в котором отражение происходит от обеих поверхностей, и вычислить интенсивность отраженного света, то можно установить даже знак b. Доля света, отражен­ного тонким слоем, нам известна, поскольку мы знаем ток, гене­рируемый в таком слое, и даже получили формулу для поля, создаваемого током. Эти аргументы приводят к соотношениям

(33.8)

Формулы (33.8) для коэффициентов отражения как функций углов падения и преломления называются формулами Френеля. В пределе, когда углы i и r стремятся к нулю, т. е. в случае падения

по нормали, мы получаем В2»b2»(i-r)2/(i+r)2 для обеих поляризаций, поскольку и синусы, и тангенсы в этих условиях практически равны углам. Но, как мы уже знаем, sini/sinr=n, а для малых углов i/r»n. Отсюда совсем просто вывести, что коэффициент отражения в случае падения по нормали равен

Интересно вычислить, например, коэффициент отражения для воды. В этом случае n=4/3 и коэффициент отражения равен (1/7)2» 2%. При падении лучей по нормали к поверх­ности от воды отражается только 2% всей энергии.

§ 7. Аномальное преломление

Последним рассмотрим поляризационное явление, которое исторически было обнаружено самым первым,— аномальное преломление света. Моряки, побывавшие в Исландии, приво­зили в Европу кристаллы исландского шпата (СаСО3), которые обладали тем забавным свойством, что рассматриваемые сквозь них предметы как бы двоились, т. е. получалось два изображе­ния предмета. Это явление привлекло внимание Гюйгенса и сыг­рало важную роль в открытии поляризации света. Как часто бывает, найденные раньше других явления оказываются в ко­нечном счете наиболее трудными для объяснения. Обычно лишь после того, как физическая идея становится понятной в мель­чайших подробностях, можно подобрать явления, иллюстри­рующие эту идею наиболее просто и наглядно.

Аномальное преломление представляет собой частный случай уже изученного нами явления двойного лучепреломления. Аномальное преломление возникает тогда, когда Оптическая ось, т.е. большая ось асимметричных молекул, не параллельна поверхности кристалла.

На фиг. 33.7 изображены два двоякопреломляющих крис­талла и показано направление оптической оси. На верхнем рисунке падающий луч линейно поляризован в направлении, перпендикулярном оптической оси кристалла. Когда луч попадает на поверхность кри­сталла, каждая точка поверх­ности служит источником новой волны, распространяю­щейся внутрь кристалла со скоростью v┴ (скоростью света в кристалле, соляризации которого перпендикулярна направлению оптической оси).

Фиг. 33.7. Путь обыкновенного луча (вверху) и путь необыкновен­ною луча (внизу) в ввоякопреломляющем кристалле.

Оптическая ось лежит в плоскости страницы.

Волновой фронт представляется просто огибающей всех этих маленьких сферических волн, он движется прямо сквозь кри­сталл. Такое поведение света считается обычным, а соответ­ствующий луч называется обыкновенным лучом.

На нижнем рисунке фиг. 33.7 поляризация падающего луча повернута на 90°, так что оптическая ось лежит в плоскости по­ляризации. Рассмотрим теперь маленькие волны, идущие от по­верхности кристалла; они уже не сферические, как в предыду­щем случае. Свет вдоль оптической оси движется со скоростью v┴, потому что поляризация перпендикулярна оптической оси, а свет, движущийся перпендикулярно оси, распространяется со скоростью v║ поскольку поляризация и оптическая ось парал­лельны. В двоякопреломляющем материале v║<v┴, и на нашем рисунке выбран случай v║<v┴. Более подробный анализ показывает, что волны у поверхности кристалла имеют форму эллипсоидов, большая ось которых совпадает с оптиче­ской осью кристалла. Огибающая этих эллиптических волн — волновой фронт — движется через кристалл, как показано на нижнем рисунке фиг. 33.7. У задней поверхности кристалла луч отклоняется на тот же угол, что и у передней, и выходит параллельно падающему лучу, сместившись на некоторое расстояние. Совершенно очевидно, что этот луч не подчиняется закону Снелла и движется довольно необычно. Поэтому его называют необык­новенным лучом.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.