Роджер Пенроуз - Большое, малое и человеческий разум Страница 5
Роджер Пенроуз - Большое, малое и человеческий разум читать онлайн бесплатно
а — наблюдатели 1 и 2 из одной и той же точки рассматривают звезды в световом конусе прошлого. Места пересечения светового конуса со звездами указаны черными точками. Световые сигналы идут от звезд к наблюдателям вдоль светового конуса. Наблюдатель 2 движется в пространстве-времени относительно наблюдателя 1 с некоторой скоростью; б — расположение звезд на небе, как его видят наблюдатели 1 и 2, когда они оказываются в одной точке пространства-времени; в — наглядное представление преобразования картины звездного неба для различных наблюдателей при использовании стереографической проекции (окружности переходят в окружности, значения углов сохраняются).
Существует прекрасная иллюстрация механизма действия таких преобразований, которая, кстати, одновременно демонстрирует исключительную элегантность и красоту математической физики при описании фундаментальных понятий и представлений. На рис. 1.10, в показана сфера, пересекаемая плоскостью по экватору. Мы можем нарисовать на поверхности этой сферы различные фигуры, а затем рассмотреть их так называемые стереографические проекции (проекции из южного полюса сферы на экваториальную плоскость), обладающие довольно необычными свойствами. Действительно, как видно из рисунка, при такой проекции не только окружности на сфере превращаются в окружности на плоскости, но сохраняются и точные значения всех углов, образуемых пересечением кривых на сфере. В гл. 2 я более подробно расскажу об этом типе проекций (см. рис. 2.4) и покажу, что с его помощью можно сопоставить все точки сферы комплексным числам (такие числа возникают при извлечении квадратного корня из отрицательных чисел), а затем перевести в точки экваториальной плоскости. Такая операция, в которую можно вовлечь все множество комплексных чисел (включая «бесконечные» значения), позволяет построить структуру, называемую сферой Римана.
Для читателя, заинтересовавшегося этой проблемой, я приведу формулу
u -> u' = (αu + ß) / (γu + δ),
описывающую преобразование (аберрации) Лоренца, которое переводит окружности в окружности и одновременно сохраняет значения всех углов. Преобразования такого типа называют преобразованиями Мёбиуса. Мне бы хотелось лишь отметить простоту и изящество этой формулы, описывающей столь сложный параметр, каким выступает в данной ситуации величина и. Совершенно удивительным кажется то, что при указанных преобразованиях в специальной теории относительности конечная формула имеет очень простой вид, в то время как соответствующие преобразования аберрации в ньютоновской механике описываются очень сложными выражениями. Как это часто бывает в физике, переход к более фундаментальным понятиям и более точным теориям приводит к упрощению математического описания, хотя на первый взгляд такой переход должен сопровождаться усложнением формального аппарата. Примером этой важной закономерности может служить разительный контраст между понятиями относительности в механике Галилея и Эйнштейна.
Специальная теория относительности во многих отношениях не только значительно проще классической механики, но и выглядит гораздо изящнее с математической точки зрения (в частности, при рассмотрении процессов в рамках теории групп). В специальной теории относительности пространство-время является плоским, а все световые конусы выстраиваются вдоль траекторий, как было показано на рис. 1.8. При переходе к более сложной общей теории относительности (теории пространства-времени с учетом гравитации) ясная физическая картина на первый взгляд «мутнеет» и теряет свою простоту, так как световые конусы оказываются разбросанными по всему пространству (рис. 1.11). Ранее я говорил, что, развивая любую теорию все глубже и глубже, мы должны приходить к более простым математическим выражениям. Представленная мною картина пока выглядит ужасающе сложной, однако если мы проявим немного терпения, то убедимся, что математическая простота и изящество теории возникнут снова.
Рис. 1.11. Искривленное пространство-время.
Напомню вам основные положения эйнштейновской теории тяготения. Прежде всего, она основана на принципе эквивалентности Галилея. На рис. 1.12 я попытался изобразить Галилея, бросающего с вершины знаменитой Пизанской башни большой и маленький камни. Независимо от того, действительно ли Галилей проводил такие эксперименты, он совершенно ясно установил, понял и сформулировал правило, что оба камня долетят до поверхности Земли за одинаковое время, если не учитывать сопротивления воздуха при падении. Если бы вы находились на одном из этих камней, то второй казался бы вам неподвижно висящим в воздухе (для более наглядной демонстрации этого факта я пририсовал телекамеру к одному из камней). В наше время эффект свободного парения очень часто демонстрируют при репортажах с космических кораблей, и недавно я сам видел британского космонавта, свободно «плавающего» в пространстве рядом с огромным космическим аппаратом (полная аналогия с большим и маленьким камнями в опытах Галилея). Именно это явление и называют принципом эквивалентности.
Рис. 1.12.
а — Галилей бросает с наклонной Пизанской башни два камня (один с телекамерой); б — астронавт и космический корабль, плавающие в пространстве как бы без воздействия гравитации.
Рассматривая гравитацию в рамках опытов со свободным падением, мы вдруг понимаем, что в этих условиях она как бы полностью исчезает. Однако эйнштейновская теория вовсе не утверждает, что тяготение исчезает, она всего лишь говорит об исчезновении силы тяжести, что означает совершенно иное явление, которое можно назвать «приливным эффектом» гравитации.
Для дальнейшего изложения мне необходимо ввести еще несколько математических понятий. Мы говорим об искривлении пространства-времени, а процессы такого типа описываются тензором, который я для удобства назову Риманом и буду обозначать заглавной буквой R в простом уравнении, которое выпишу чуть ниже. Я не буду объяснять вам, в чем состоит физический смысл тензора кривизны Римана, обозначенного R, а только отмечу, что тензоры имеют некоторое число нижних индексов, вместо которых в уравнение поставлено соответствующее число точек (внизу справа от знака тензора). Тензор кривизны R можно разложить на две составляющие (одну из которых я назову кривизной Вейля, а вторую — кривизной Риччи), что позволяет мне выписать уравнение
Риман = Вейль + Риччи
R.... = C... +R'...g..,
где формально величины С и R' являются тензорами кривизны Вейля и Риччи, a g — так называемый метрический тензор.
Кривизна Вейля является объективным показателем упомянутого выше «приливного эффекта», физическую природу которого я поясню сейчас на простом примере. С точки зрения космонавта гравитация исчезает, однако мы понимаем, что это не так. Представьте себе, например, что космонавт окружен сферическим облаком неподвижных относительно него частиц. С течением времени это облако начнет «расплываться» и деформироваться, после чего в результате очень небольшого различия сил тяготения в различных участках сферы (мне хочется особо подчеркнуть, что я могу вполне адекватно описать эффект в рамках ньютоновской механики) сферическое облако через некоторое время превратится в эллипсоид, как показано на рис. 1.13, а.
Рис. 1.13.
а — приливный эффект. Широкие стрелки показывают направление относительного ускорения частиц; б — если сферическое облако окружает какой-либо массивный объект (например, Землю), то оно испытывает в целом ускорение, направленное «внутрь».
Как я уже говорил, искажение отчасти объясняется тем, что частицы, расположенные ближе к Земле, ускоряются сильнее, чем частицы на периферии облака. Кроме того, частицы по «бокам» сферы испытывают небольшие ускорения «внутрь», что также показано на рис. 1.13, а. Обе эти причины способствуют образованию эллипсоида из первоначально сферического облака частиц. Описываемый эффект очень удачно был назван «приливным», поскольку достаточно заменить Землю в наших рассуждениях Луной, а облако частиц — мировым океаном, как мы сразу поймем, почему поверхность морей на нашей планете не представляет собой правильную сферу! В соответствии с совершенно таким же механизмом морская толща на обращенной к Луне поверхности Земли притягивается Луной чуть сильнее, чем на обратной стороне, в результате чего вдоль морской поверхности дважды в день пробегает высокая приливная водна.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.