Яков Гегузин - Капля Страница 5

Тут можно читать бесплатно Яков Гегузин - Капля. Жанр: Научные и научно-популярные книги / Физика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Яков Гегузин - Капля читать онлайн бесплатно

Яков Гегузин - Капля - читать книгу онлайн бесплатно, автор Яков Гегузин

 

При такой оценке времени кажется, что надежда на­блюдать подпрыгивающую каплю становится иллюзор­ной. Но, если каплю на подложке перевести в состояние невесомости или близкое к нему, произойдет то, к чему мы стремимся: потеряв вес, капля приобретает сферичес­кую форму и на нее перестает действовать сила тяжести, мешающая оторваться от пластинки, на которой она лежит. В состоянии невесомости величина g, которая стоит в знаменателе последней формулы, обращается в нуль, а это значит, что т становится рав­ным бесконечности, и капля подскочит даже при сколь угодно медленном преобразо­вании ее формы. При малей­шем изменении формы она оторвется от пластинки и с некоторой скоростью начнет двигаться от нее. Ситуация совершенно аналогична той, в которую попадают космо­навты во время полета, когда им приходится специально заботиться, чтобы случайное движение не вынудило их покинуть рабочее место.

 

Подпрыгнувшая в невесомости капля, колеблясь, свободно летит вверх

Вот теперь можно расска­зать о великолепном экспери­менте, который в 1970 г. по­ставили советские физики И. М. Кирко, Е. П. Добычин и В. И. Попов. Их экспери­мент состоял в следующем. Тяжелый контейнер, в кото­ром располагались прозрач­ный сосуд с двадцатиграм­мовой каплей ртути, залитой раствором соляной кислоты, и автоматически работающая кинокамера, сбрасывался с высоты 20 м. Во время свобод­ного полета, длившегося 2 сек., все содержимое контей­нера было практически в со­стоянии невесомости. Кинока­мера зафиксировала происхо­дящее в полете: ртутная ле­пешка, превращаясь в сферу, подпрыгнула и полетела прочь от дна прозрачной кюветы со скоростью 8,7 см/сек. Это главное наблюдение, сделанное камерой. Проверим, как оно согласуется с величиной энер­гии, которая должна выделиться при сфероидизации кап­ли. Именно для этой проверки в начале очерка была наз­вана энергия, которая выделяется при сфероидизации ртутной капли весом 20 г. Получив скорость 8,7 см/сек., она унесет с собой энергию Wk= mν2/2= 752 эрг,

т. е. большую часть всей выделяющейся энергии. Не ис­пользованными при прыжке остались 1060 — 752 =  308 эрг. Как показала кинокамера, основная часть этой энергии была израсходована на преодоление сопротивления вязкой ртути ее деформированию — движущаяся капля пульсировала, колебалась, и на это расходовалась энергия.

При опытах обнаружился еще один сток энергии — на этот раз энергии движущейся капли. Когда капля под­ходила к границе соляная кислота — воздух, грани­ца изгибалась и отражала от себя каплю, заставляя ее двигаться в обратном направлении. Часть энергии капли расходовалась на изгиб границы. Ртутная капля, подобно мячику, металась между дном кюветы и границей между соляной кислотой и воздухом. Именно поэтому свою статью, опубликованную в «Докладах АН СССР» (1970, т. 192, № 2), экспериментаторы назвали не совсем акаде­мично, но точно и выразительно: «Явление капиллярной игры в мяч в условиях невесомости».

Возникает естественный вопрос: почему этот опыт, в основе своей «классический», постановка которого не пред­полагает использования каких-либо новых «квантовых» идей, не был осуществлен, скажем, 150 лет назад? Неужели потому, что тогда не было автоматических кинокамер? Но мог же какой-нибудь энтузиаст-естествоиспытатель, держа в руках перед глазами прозрачную кювету с ртут­ной лепешкой, покрытой соляной кислотой, прыгнуть «солдатиком» в воду с десятиметровой вышки! Вынырнул бы и сообщил, что капля подпрыгнула. И скорость мог бы ее определить по зарубкам на кювете. А вот не прыг­нул. Видимо, не было интереса к тому, что может про­изойти в невесомости. А сейчас, в наш век, интерес к невесомости огромный. Вот и пришла в голову мысль сбросить с высоты контейнер с ртутной каплей и автома­тической кинокамерой.

Фильм о слиянии двух капель

Этому фильму предшествовала 26-летняя история. Ее на­чало восходит к 1944 году, а фильм был снят в 1970-м. Прежде чем всмотреться в кадры фильма, пожалуй, стоит проследить этапы этой истории. Началась она в Казани. Я. И. Френкель был в этом городе в эвакуации и работал над развитием теории жидкости и твердого тела. Он обду­мывал вопрос, который и до него возникал перед многими: каким образом твердые, скажем металлические, поро­шинки, которые соприкасаются лишь в отдельных точках, после длительного отжига при высокой температуре ока­зываются прочно соединенными, приблизившимися друг к другу,— вопрос, рожденный необходимостью понять физику процессов, которые происходят при спекании спрес­сованных порошков, процессов, лежащих в основе порош­ковой металлургии.

Ученый последовательно развивал мысль: в строении твердых и жидких тел много общих черт и процесс плавле­ния не бог весть какое революционное событие в жизни вещества, так как плотность при этом изменяется незначи­тельно, незначительно меняется и расстояние между ато­мами, а следовательно, и силы, связывающие их. При плавлении катастрофически уменьшается вязкость веще­ства — жидкость течет даже при малых воздействиях на нее, а твердое тело при таких воздействиях зримо остается неизменным, сохраняя свою форму. В действительности, однако, и оно течет, но это происходит во много раз мед­леннее, чем в жидкости.

Такое различие свойств жидкости и твердого тела Френ­кель считал не принципиальным, а только количествен­ным. В кругу этих идей у него и появился ответ на вопрос о том, каким образом твердые порошинки при высокой температуре самопроизвольно сближаются и соединя­ются в одно целое. Они просто сливаются, подобно тому как сливаются две соприкоснувшиеся жидкие капли. Такое слияние и в случае твердых крупинок, и в случае жидких капель оправданно и выгодно потому, что сопро­вождается уменьшением поверхности порошинок — ка­пель. Вот, пожалуй, основная идея: порошинки сливают­ся, и этот процесс приводит к выигрышу энергии. Теперь нужен расчет скорости процесса слияния капель или кру­пинок. Он завершится формулой, затем эту формулу сле­дует вручить экспериментатору, который выступит тре­тейским судьей между теоретиком и явлением.

Профессор Френкель как-то писал о том, что хороший теоретик обычно рисует не точный портрет явления, а карикатуру на него. Это значит, что подобно карикату­ристу, он отбрасывает не очень существенные детали явления и оставляет лишь наиболее характерные его осо­бенности. Талантливый карикатурист нарисует несколько завитков на лбу, кончики пальцев, держащих сигару, узел галстука — и все уже знают, кого он изобразил. Перед физиком-теоретиком почти та же задача. Реальное явление, как правило, очень сложно и описать его абсо­лютно точно чаще всего просто немыслимо. И Френкель, великолепный теоретик, нарисовал «карикатуру» процес­са: вместо реальных крупинок произвольной формы он примыслил две сферические крупинки, вместо реального контакта по какой-то сложной поверхности — контакт в одной точке. И еще одно упрощение он вынужден был сде­лать: решил описать лишь начальную стадию процесса, когда на образование контактного перешейка между двумя каплями расходуется так мало вещества, что радиу­сы сливающихся капель можно считать практически не- изменившимися. Он считал, что на этой стадии слияние сферических капель происходит под действием сил, кото­рые приложены только к вогнутым участкам поверхности формирующегося перешейка, движутся только эти участки поверхности, а вся прочая поверхность сфер в процессе участия не принимает.

Теоретик сделал главное: предложил идею и определил условия, в которых проявляются наиболее существенные черты явления. После этого формула появилась без осо­бого труда. Оказалось, что площадь круга, по которому соприкасаются сферические капли, равномерно увеличи­вается со временем: время увеличилось вдвое и площадь — вдвое, время — втрое и площадь — втрое.

Неизвестно, заботился ли Френкель лишь об удобст­вах теоретика, определяя черты «карикатуры», или думал и об экспериментаторе, но модель сливающихся сфери­ческих капель была экспериментаторами охотно взята «на вооружение». Они припекали друг к другу маленькие стек­лянные бусинки, нагретые до высокой температуры. Под­черкнем слово «маленькие» — сферические бусинки имели диаметр не более долей миллиметра. С бусинками более крупными экспериментировать нельзя, так как они будут деформироваться под влиянием собственной тяжести, а этого модель Френкеля не предусматривает. Специально не подчеркивая этого, Френкель предполагал, что капли подвержены лишь силам, которые обусловлены наличием поверхностного натяжения, т. е. находятся в невесдмости.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.