Ричард Фейнман - 2. Пространство. Время. Движение Страница 5

Тут можно читать бесплатно Ричард Фейнман - 2. Пространство. Время. Движение. Жанр: Научные и научно-популярные книги / Физика, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Ричард Фейнман - 2. Пространство. Время. Движение читать онлайн бесплатно

Ричард Фейнман - 2. Пространство. Время. Движение - читать книгу онлайн бесплатно, автор Ричард Фейнман

На чем еще скажется релятивистский рост массы? Рас­смотрим движение молекул газа в баллоне. Если газ нагреть, скорость молекул возрастет, а вместе с нею и их масса. Газ станет тяжелее. Насколько?

Разлагая т0/Ц(1-v2/c2)=m0(1-v2/с2)-1/2 в ряд по формуле бинома Ньютона, можно найти приближенно рост массы при малых скоростях. Получается

Из формулы ясно, что при малых v ряд быстро сходится и первых двух-трех членов здесь вполне достаточно. Значит, можно написать

где второй член и выражает рост массы за счет повышения скорости. Когда растет температура, v2 растет в равной мере, значит, увеличение массы пропорционально повышению тем­пературы. Но 1/2т0v2— это кинетическая энергия в старомод­ном, ньютоновом смысле этого слова. Значит, можно сказать, что прирост массы газа равен приросту кинетической энергии, деленной на с2, т. е. Dm=D(к.э.)/с2.

§ 9. Связь массы и энергии

Это наблюдение навело Эйнштейна на мысль, что массу тела можно выразить проще, чем по формуле (15.1), если сказать, что масса равна полному содержанию энергии в теле, деленному на с2. Если (15.11) помножить на с2, получается

mc2=m0с2+1/2m0v2+... . (15.12)

Здесь левая часть дает полную энергию тела, а в последнем члене справа мы узнаем обычную кинетическую энергию. Эйнштейн осмыслил первый член справа (очень большое по­стоянное число т0с2) как часть полной энергии тела, а именно как его внутреннюю энергию, или «энергию покоя».

К каким следствиям мы придем, если вслед за Эйнштейном предположим, что энергия тела всегда равна тс2? Тогда мы сможем вывести формулу (15.1) зависимости массы от скорости, ту самую, которую до сих пор мы принимали на веру. Пусть тело сперва покоится, обладая энергией т0с2. Затем мы при­кладываем к телу силу, которая сдвигает его с места и постав­ляет ему кинетическую энергию; раз энергия примется воз­растать, то начнет расти и масса (это все заложено в первона­чальном предположении). Пока сила действует, энергия и масса продолжают расти. Мы уже видели (см. гл. 13), что быстрота роста энергии со временем равна произведению силы на скорость

de/dt=F·v. (15.13)

Кроме того, F=d(mv)/dt [см. гл. 9, уравнение (9.1)]. Связав все это с определением Е и подставив в (15.13), получим

Мы хотим решить это уравнение относительно m. Для этого помножим обе части на 2m. Уравнение обратится в

Теперь нам нужно избавиться от производных, т. е. проин­тегрировать обе части равенства. В величине (2m) dm/dt можно узнать производную по времени от m2, а в (2mvd(mv)/dt— производную по времени от (mv)2. Значит, (15.15) совпадает с

Когда производные двух величин равны, то сами величины могут отличаться не больше чем на константу С. Это позво­ляет написать

m2с2=m2v2+C. (15.17)

Определим теперь константу С явно. Так как уравнение (15.17) должно выполняться при любых скоростях, то можно взять v=0 и обозначить в этом случае массу через m0. Подстановка этих чисел в (15.17) дает

m20c2=0+С.

Это значение С теперь можно подставить в уравнение (15.17). Оно принимает вид

m2c2=m2v2+m20c2. (15.18)

Разделим на с2 и перенесем члены с m в левую часть

m2(1-v2/c2)=m20,

откуда

А это и есть формула (15.1), т. е. как раз то, что необходимо, чтобы в уравнении (15.12) было соответствие между массой и энергией.

В обычных условиях изменения в энергии приводят к очень малым изменениям в массе: почти никогда не удается из дан­ного количества вещества извлечь много энергии; но в атомной бомбе с энергией взрыва, эквивалентной 20 000 тонн трини­тротолуола, весь пепел, осевший после взрыва, на 1 г легче первоначального количества расщепляющегося материала. Это потому, что выделилась энергия, которая имела массу 1 г, в согласии с формулой DE=D(mc2). Вывод об эквивалент­ности массы и энергии прекрасно подтвердился в опытах по аннигиляции материи — превращению вещества в энергию. Электрон с позитроном могут взаимодействовать в покое, имея каждый массу покоя m0. При сближении они исчезают, а вместо них излучаются два g-луча, каждый опять с энергией т0с2. Этот опыт прямо сообщает нам о величине энергии, свя­занной с существованием массы покоя у частицы.

* Правда, видимый свет проиграет гонку из-за преломления в воз­духе. А g-излучение ее, несомненно, выиграет.

* Выпуск 1

Глава 16

РЕЛЯТИВИСТСКАЯ ЭНЕРГИЯ И РЕЛЯТИВИСТСКИЙ ИМПУЛЬС

§ 1. Относитель­ность и «фило­софы»

§ 2. Парадокс близнецов

§ 3. Преобразование скоростей

§ 4. Релятивистская масса

§ 5. Релятивистская энергия

§ 1. Относительность и «философы»

В этой главе мы продолжим обсуждение принципа относительности Эйнштейна — Пуан­каре, его влияния на наши физические воз­зрения и на весь характер человеческого мыш­ления.

Пуанкаре следующим образом сформулиро­вал принцип относительности: «Согласно прин­ципу относительности, законы физических явле­ний обязаны быть одинаковыми для непод­вижного наблюдателя и для наблюдателя, ко­торый относительно него переносится равно­мерным движением, так что у нас нет и не может быть никаких способов отличить, уно­сит ли нас такое движение или не уносит».

Когда эта мысль обрушилась на человечест­во, среди философов началась суматоха. Осо­бенно среди «философов за чашкой чая», кото­рые говорят: «О, это очень просто: теория Эйн­штейна утверждает, что все относительно!» Поразительное множество таких «философов»— и не только рассуждающих за чашкой чая (впрочем, не желая их обижать, я буду говорить только о «философах за чашкой чая»)—твердят: «Из открытий Эйнштейна следует, что все отно­сительно; это оказало глубокое влияние на нашу мысль». И еще потом добавляют: «В физике было доказано, что явления зависят от системы отсчета». Можно услышать немало подобных ве­щей, но трудно понять их смысл. По-видимому, системы отсчета, о которых идет речь, — это те системы координат, которыми мы пользовались в анализе теории относительности. Итак, тот факт, что «все зависит от системы отсчета», оказывает могучее влияние на современную мысль. Остается только удивляться, почему? Ведь прежде всего сама идея: «все зависит от точки зрения» — настолько проста, что, несомненно, не было нужды обременять себя анализом трудностей физической теории относительности, чтобы открыть ее. Всякий, кто идет по тротуару, знает, что все, что он видит, зависит от его системы отсчета. Сперва он видит лица прохожих, а уж потом — их затылки. И почти во всех философских заключениях, о которых говорят, что они проистекли из теории относительности, нет ничего более глу­бокого, чем утверждения типа: «Пешеход выглядит спереди иначе, нежели сзади». Известный рассказ о нескольких слепых, споривших, на что похож слон, тоже весьма напоминает теорию относительности с точки зрения таких философов.

Но в теории относительности, пожалуй, есть кое-что и поглубже, чем наблюдение, что человек спереди выглядит иначе, чем сзади. Принцип относительности куда глубже этого, ведь с его помощью мы можем делать определенные пред­сказания. Но было бы более чем странно, если бы только это наблюдение позволило нам предсказывать поведение природы.

Есть и другая школа «философов». Эти чувствуют себя очень неуютно из-за теории относительности, которая заявляет, что нельзя определить свою абсолютную скорость, не глядя ни на что снаружи корабля. Они восклицают: «Вполне понятно, что никто не может измерить своей скорости, не выглядывая наружу. Само собой очевидно, что бессмысленно говорить о чьей-то скорости, если не глядеть по сторонам. Глупцы были те физики, которые думали иначе. Их вдруг осенило, вот они и рады; но если бы мы, философы, представляли, какие пробле­мы стояли перед физиками, мы их давно решили бы чисто моз­говым усилием и сразу же поняли бы, что невозможно опре­делить скорость, не выглянув наружу. И мы сделали бы гро­мадный вклад в эту их физику». Эти философы всегда топчутся около нас, они мельтешат на обочинах науки, то и дело поры­ваясь сообщить нам что-то. Но никогда на самом деле они не понимали всей тонкости и глубины наших проблем.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.