Стивен Хокинг - Теория всего[Происхождение и судьба Вселенной] Страница 6
Стивен Хокинг - Теория всего[Происхождение и судьба Вселенной] читать онлайн бесплатно
Несколько следующих лет я разрабатывал новые математические приемы, которые позволили бы исключить это и другие технические условия из теорем, доказывающих, что сингулярности должны существовать. Результатом стала опубликованная в 1970 г. Пенроузом и мной совместная статья, утверждавшая, что сингулярность Большого Взрыва должна была существовать при условии, что общая теория относительности справедлива и количество вещества во Вселенной соответствует тому, которое мы наблюдаем.
Последовала масса возражений, частично от советских ученых, которые придерживались «партийной линии», провозглашенной Лифшицем и Халатниковым, а частично от тех, кто питал отвращение к самой идее сингулярности, оскорбляющей красоту теории Эйнштейна. Впрочем, с математической теоремой трудно поспорить. Поэтому ныне широко признано, что Вселенная должна была иметь начало.
Третья лекция. Черные дыры
Термин «черная дыра» возник сравнительно недавно. Американский ученый Джон Уилер ввел его в 1969 г. как наглядное отображение идеи, зародившейся самое меньшее два века назад. В то время существовало две теории света. Одна провозглашала, что свет — это поток частиц, другая — что это волны. Теперь мы знаем, что верны обе теории. Принцип корпускулярно-волнового дуализма, принятый в квантовой механике, разрешает рассматривать свет и как частицы, и как волны. Однако волновая концепция света не проясняет того, воздействует ли на свет гравитация. Если рассматривать свет как поток частиц, можно ожидать, что гравитация воздействует на него таким же образом, как на пушечные ядра, ракеты и небесные тела.
В 1783 г. кембриджский преподаватель Джон Мичелл написал статью для журнала «Философские труды Лондонского Королевского общества», в которой указывал: достаточно массивные и плотные звезды могут обладать настолько мощным гравитационным полем, что удерживают испускаемый ими свет. Любой свет, излучаемый поверхностью звезды, будет притянут назад гравитацией и не сможет удалиться на сколько-нибудь значительное расстояние. Мичелл предположил, что таких звезд во Вселенной немало. Хотя мы не можем их видеть (ведь их свет никогда не достигнет нас), мы способны регистрировать их гравитационное воздействие.
Именно подобные объекты мы и называем черными дырами, потому что таковы они есть — черные пустоты в космосе.
Сходное предположение — независимо от Мичелла, через несколько лет после него — высказал французский астроном Лаплас. Примечательно, что эту гипотезу он включил только в первые два издания своей книги «Изложение системы мира», а из последнего выбросил; должно быть, посчитал идею слишком безумной. На самом деле не совсем последовательно уподоблять свет пушечным ядрам ньютоновской теории тяготения, поскольку скорость света — величина постоянная. Ядро, выпущенное пушкой в воздух с поверхности Земли, под действием гравитации замедлит свое движение вверх, затем остановится и упадет. Фотоны же продолжают двигаться вверх с постоянной скоростью. Так каким же образом воздействует на свет ньютоновская гравитация? Последовательной теории воздействия тяготения на свет не существовало до тех пор, пока Эйнштейн в 1915 г. не сформулировал общую теорию относительности, и даже после этого прошло немало времени, прежде чем были выработаны приложения этой теории к поведению массивных звезд.
Чтобы понять, как могла бы формироваться черная дыра, нам сначала необходимо вникнуть в жизненный цикл звезды. Она образуется из огромного количества газа (главным образом водорода), сжимающегося под действием гравитации. По мере сжатия атомы газа все чаще сталкиваются друг с другом и приобретают всё большую скорость — газ разогревается. В какой-то момент он становится настолько горячим, что атомы водорода уже не разлетаются при столкновениях, а начинают сливаться, образуя атомы гелия. Именно тепло, выделяющееся при этой реакции, которая напоминает контролируемый взрыв водородной бомбы, и заставляет светиться звезды. Это выделяющееся тепло повышает давление газа до тех пор, пока оно не уравновешивает гравитационное притяжение, и тогда сжатие газа останавливается. Нечто подобное происходит с воздушным шариком: газ, наполняющий резиновую оболочку, стремится растянуть ее, но действие его уравновешивают упругие силы в резине, которые пытаются оболочку сократить.
В этом устойчивом состоянии, когда воздействие выделяющегося при ядерной реакции тепла компенсируется гравитацией, звезда может пребывать длительное время. Однако рано или поздно она израсходует свой водород и другое ядерное топливо. И вот парадокс: чем больше такого топлива имелось изначально, тем скорее оно будет растрачено. А все потому, что чем массивнее звезда, тем больше тепла требуется для противодействия гравитации. И чем горячее звезда, тем скорее сжигается «горючее». Нашему Солнцу, по-видимому, его хватит еще на пять миллиардов лет или около того, но более крупные звезды могут извести свое «горючее» всего за каких-то сто миллионов лет — малость в сравнении с возрастом Вселенной. Лишившись топлива, звезда начинает остывать и сокращаться в размерах. Что может происходить затем, было выяснено лишь в конце 1920-х гг.
В 1928 г. индийский аспирант Субраманьян Чандрасекар отплыл в Англию, чтобы обучаться в Кембридже у британского астронома сэра Артура Эддингтона. Эддингтон занимался общей теорией относительности. Рассказывают, что в начале 1920-х гг. некий журналист спросил его: «Правда ли, что лишь три человека в мире понимают эту теорию?» «И кто же третий?» — откликнулся Эддингтон.
За время своего плавания из Индии в Англию Чандрасекар рассчитал, какой величины может быть звезда, способная сопротивляться собственной гравитации после того, как выработано все топливо. Его идея была такова: когда звезда уменьшается в размерах, расстояние между частицами вещества сокращается. Однако так называемый принцип запрета Паули не позволяет двум частицам вещества одновременно
иметь одно и то же положение и одну и ту же скорость. Частицы должны обладать различной скоростью. Это заставляет их разлетаться в разные стороны, что, в свою очередь, вызывает расширение звезды. Она, таким образом, получает возможность сохранять постоянный радиус за счет баланса между притяжением, вызванным гравитацией, и отталкиванием, обусловленным принципом запрета Паули, подобно тому как раньше гравитационное сжатие уравновешивалось расширением, возникающим из-за выделения тепла при ядерных реакциях.
Чандрасекар понял, однако, что отталкивание, определяемое принципом запрета, имеет свой предел. Теория относительности ограничивает скорость разлетания частиц вещества в недрах звезды скоростью света. Следовательно, когда звезда достигает некоторой плотности, отталкивание, связанное с принципом запрета, оказывается слабее гравитационного притяжения. Чандрасекар вычислил, что холодная звезда, масса которой в 1,5 раза больше массы нашего Солнца, не способна сопротивляться собственной гравитации. Эта масса получила название предел Чандрасекара.
Отсюда вытекают самые серьезные последствия для участи массивных звезд. Звезда, масса которой меньше предела Чандрасекара, может в конце концов перестать сжиматься и перейти в возможное финальное состояние белого карлика с радиусом несколько тысяч километров и плотностью порядка сотен тонн на кубический сантиметр. Существование белого карлика поддерживается отталкиванием между электронами в его веществе, что обусловлено принципом запрета Паули. Мы наблюдаем большое число белых карликов. Одним из первых был открыт тот, что обращается вокруг Сириуса, самой яркой звезды на ночном небе.
Было доказано, что возможен и другой исход для звезды, масса которой также не больше одной-двух масс Солнца, но которая значительно меньше белого карлика. Такие звезды
тоже обязаны своим существованием отталкиванию, обусловленному принципом запрета Паули, но не между электронами, а между нейтронами и протонами. Потому они и называются нейтронными. Они имеют в поперечнике от 20 до 30 километров, а их плотность составляет миллиарды тонн на кубический сантиметр. В то время, когда была предсказана возможность существования подобных объектов, наблюдать их не удавалось, так что обнаружили их значительно позднее.
С другой стороны, звезды, масса которых выше предела Чандрасекара, ожидает незавидная участь, когда их ядерное топливо подходит к концу. Иногда они взрываются или выбрасывают достаточно вещества, чтобы масса их упала ниже критического предела; но трудно поверить, что такое случается всегда, сколь бы велика ни была звезда. Откуда ей знать, что надо скинуть вес? Пусть даже каждой звезде удается потерять необходимую массу — что произойдет, если дополнительная масса прибавится к белому карлику или нейтронной звезде, заставив их выйти за предел Чандрасекара? Ожидает ли их коллапс, сжатие до бесконечной плотности?
Жалоба
Напишите нам, и мы в срочном порядке примем меры.