Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных. Страница 7
Александр Виленкин - Мир многих миров. Физики в поисках иных вселенных. читать онлайн бесплатно
Когда летом 1933 года Гамову сообщили, что ему доверено представлять Советский Союз на престижном Сольвеевском конгрессе по ядерной физике в Брюсселе, это стало для ученого полной неожиданностью. Он был вне себя от восторга, но не понимал, как это получилось. Все объяснилось после прибытия на конгресс. Когда Гамов не появился в Риме, Нильс Бор забеспокоился и стал разыскивать своего старого друга. Он попросил французского физика Поля Ланжевена, члена Французской коммунистической партии, использовать свои связи, чтобы организовать приезд Гамова на Сольвеевский конгресс. Однако Гамов был потрясен, когда узнал, что Бор лично поручился Ланжевену за Гамова, пообещав, что тот вернется в Советский Союз! В тот вечер за ужином Гамов оказался за столом рядом с Марией Кюри, знаменитой первооткрывательницей радия и плутония, и рассказал ей о невыносимой ситуации, в которую попал. Мадам Кюри близко знала Ланжевена (ходили слухи, что даже очень близко); она сказала, что поговорит с ним. После бессонной ночи и дня тревожного ожидания Гамов узнал от нее, что вопрос улажен и он может не возвращаться. На следующий год он получил пост профессора в университете Джорджа Вашингтона в Соединенных Штатах.
Первичный огненный шар
Гамов понимал, что ранняя Вселенная была не только сверхплотной, но также и очень горячей. Причина в том, что газы разогреваются, когда их сжимают, и охлаждаются при расширении. (Велосипедисты говорят, что им это хорошо известно: когда шины накачивают воздухом, они становятся теплыми.)
Чтобы понять, почему расширение вызывает остывание, рассмотрим газ, заключенный в большой ящик. Молекулы газа можно представить в виде маленьких шариков, которые отскакивают от стенок ящика. Вообразите теперь, что эти стенки раздвигаются. Как повлияет их удаление на молекулы? Если вы на тренировке бросите теннисный мяч в стену, он отлетит к вам с той же скоростью. Но представьте на мгновение, что стена от вас удаляется. Скорость мяча относительно стены будет тогда меньше, и он отскочит назад медленней, чем вы его бросили. Аналогично и молекулы в расширяющемся ящике будут замедляться при каждом отскоке от стены. Температура пропорциональна средней энергии молекул, и, следовательно, в ходе этого процесса она будет убывать. Конечно, в расширяющейся Вселенной нет движущихся стен, но частицы отскакивают друг от друга, и это точно так же влияет на температуру. Увеличиваясь, Вселенная становится все холоднее и холоднее. А значит, чем дальше мы отступаем в прошлое, тем горячее она должна быть, если же продолжить экстраполяцию до самой сингулярности, Вселенная становится бесконечно горячей.
При температурах свыше нескольких сотен градусов Кельвина[20] связи, удерживающие атомы в молекулах, уже не способны противостоять теплу, и молекулы распадаются. Дальнейшее повышение температуры ведет к постепенному разрушению атомов. Сначала, около 3 000 градусов Кельвина, электроны отрываются от атомных ядер[21], затем, примерно при миллиарде градусов, ядра распадаются на протоны и нейтроны (собирательно называемые нуклонами), и, наконец, с приближением к триллиону градусов нуклоны разбиваются на свои элементарные составляющие, называемые кварками.
Помимо частиц материи, из которых состоят атомы, первичный огненный шар содержал также огромное количество квантов излучения — фотонов. Фотоны — это пакеты электрической и магнитной энергии; из них состоит обычный видимый свет. Движущиеся заряженные частицы испускают и поглощают фотоны, поэтому довольно быстро устанавливается равновесие, при котором фотоны поглощаются в том же темпе, что и излучаются. Чем выше температура, тем больше плотность энергии фотонов в равновесии. Кажется, что рецепт горячего космического супа выглядит очень просто: раздробите все на самые мелкие части, перемешайте и не скупясь приправьте фотонами. Однако есть в нем и кое-что еще.
Чем дальше мы продвигаемся назад во времени, тем энергичнее становятся частицы, тем теснее им и тем чаще они сталкиваются друг с другом. Чтобы понять состав огненного шара, надо знать, что случается при таких высокоэнергичных соударениях. Сталкивать элементарные частицы — любимое занятие ученых, специализирующихся на физике высоких энергий. Для этого строятся колоссальные агрегаты, называемые ускорителями, где частицы разгоняют до чудовищных энергий, позволяют им врезаться друг в друга и смотрят, что получится. Это гораздо увлекательнее, чем наблюдать за столкновением бильярдных шаров, поскольку частицы при столкновении часто меняют свой тип, как если бы красный и синий шары при столкновении превращались в желтый и зеленый. Количество частиц также подвержено изменениям: две исходные частицы могут породить фейерверк из десятков новых, разлетающихся из точки столкновения. Подобные события повсеместно происходили в первые мгновения после Большого взрыва.
В таких столкновениях нельзя точно предсказать, что должно случиться. Существует множество возможных исходов, и физики, используя квантовую теорию, вычисляют их вероятности. Но это все, что можно сделать: в квантовом мире нет места определенности. Диапазон возможного ограничивается лишь несколькими законами сохранения, которые строго соблюдаются. Например, законы сохранения энергии и электрического заряда требуют, чтобы полная энергия и суммарный заряд до и после столкновения были одинаковыми. Таким образом, любой процесс, не запрещенный законами сохранения, разрешен и будет происходить с ненулевой вероятностью. В ранней Вселенной частицы безостановочно сталкиваются друг с другом, и огненный шар наполняется всеми типами частиц, какие только могут быть созданы в этих столкновениях.
Для каждого типа частиц есть античастицы с такой же массой и противоположным электрическим зарядом. Частицы и античастицы часто рождаются парами. Например, два фотона с энергиями больше той, что соответствует массе электрона (по формуле Е = mc2), могут столкнуться и превратиться в электрон и его античастицу, называемую позитроном. Обратный процесс называется аннигиляцией пары: электрон и позитрон сталкиваются и превращаются в два фотона.
При температурах свыше 10 миллиардов градусов энергии частиц становятся достаточными для порождения электрон-позитронных пар. Как результат, огненный шар наполняется газом из электронов и позитронов, плотность которого примерно равна плотности фотонного газа. При еще более высоких температурах появляются все более тяжелые частицы. Физики занесли в свои реестры целый зоопарк различных частиц с массами, распределенными в весьма широком диапазоне. На верхнем конце этого диапазона располагаются W- и Z-частицы, которые в 300 000 раз массивнее электрона, и топ-кварк, у которого масса еще вдвое больше. Это самые тяжелые частицы, полученные к сегодняшнему дню на ускорителях. Они существуют в огненном шаре при температурах выше 3 000 триллионов градусов. По мере приближения к этим температурам наши знания о частицах становятся все более приблизительными, а представления об устройстве первичного огненного шара — все менее и менее надежными.
Уравнения Фридмана можно использовать для определения температуры и плотности огненного шара в любой момент времени. Например, спустя одну секунду после Большого взрыва температура составляет 10 миллиардов градусов, а плотность — около 1 тонны на кубический сантиметр. Чтобы не повторять каждый раз слова "после Большого взрыва", я буду использовать сокращение ПБВ. Самая насыщенная событиями часть истории огненного шара, для которой характерна быстрая смена поколений экзотических частиц, приходится как раз на первую секунду его существования. W-, Z- и более тяжелые частицы широко распространены только в первую 0,00000000001 секунды ПБВ. Мюоны — частицы, похожие на электроны, но в 200 раз более тяжелые, — аннигилируют со своими античастицами около 0,0001 секунды. Примерно в то же время триплеты кварков соединяются вместе, образуя нуклоны. Последними аннигилируют электрон-позитронные пары. Они исчезают около 1 секунды ПБВ. Чтобы в наше время осталось некоторое количество электронов и нуклонов, в тот период должен иметь место небольшой избыток кварков по сравнению с антикварками и электронов по сравнению с позитронами.[22] По истечении первой секунды в составе космического супа остаются нуклоны, электроны и фотоны.[23]
Алхимия Гамова
Частицы вроде кварков, W и Z не были известны во времена Гамова, он не слыхал даже об электрон-позитронных парах. Больше всего его интересовала история космоса после 1 секунды ПБВ. Еще в начале своей карьеры Гамов увлекся проблемой происхождения атомов. В природе обнаруживается 92 различных типа атомов, или химических элементов. Некоторые из них, такие как водород или гелий, распространены очень широко, тогда как другие, например золото или уран, встречаются крайне редко. Гамов хотел понять причину этого: чем определяется распространенность элементов?
Жалоба
Напишите нам, и мы в срочном порядке примем меры.