Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики Страница 7
Ричард Фейнман - Фейнмановские лекции по физике 1. Современная наука о природе, законы механики читать онлайн бесплатно
Фиг. 1.9. Запах фиалки.
Снова мы находим здесь азот, кислород, водяной пар… (А он–то откуда здесь? От влажных фиалок. Все растения испаряют воду.)
Среди них, однако, витает «чудовище», сложенное из атомов углерода, водорода и кислорода, облюбовавших для себя особого вида расположение. Это расположение намного сложнее, чем у углекислоты. К сожалению, мы не можем его нарисовать: хотя оно известно химикам очень точно, но оно ведь трехмерное, а как его изобразишь в двух измерениях?! Как нарисовать шесть углеродов, которые образуют кольцо, но не плоское, а «гармошкой»? Все углы, все расстояния в ней известны. Так вот, химическая формула – это просто картина такой молекулы. Когда химик пишет формулу на доске, он, грубо говоря, пытается нарисовать молекулу в двух измерениях. Например, мы видим кольцо из шести углеродов; углеродную цепочку, свисающую с одного конца; кислород, торчащий на конце цепочки; три водорода, привязанные вон к тому углероду; два углерода и три водорода, прилепленные вот здесь, и т. д.
Как же химик узнает, что это за расположение? Возьмет он две пробирки с веществом, сольет их содержимое и смотрит: если смесь покраснела, значит, к такому–то месту молекулы прикреплен один водород и два углерода; если посинела, то… то это ничего не значит. Органическая химия может поспорить с самыми фантастическими страницами детективных романов. Чтобы узнать, как расположены атомы в какой–нибудь невероятно сложной молекуле, химик смотрит, что будет, если смешать два разных вещества! Да физик нипочем не поверит, что химик, описывая расположение атомов, понимает, о чем говорит. Но вот уже больше 20 лет, как появился физический метод, который позволяет разглядывать молекулы (не такие сложные, но по крайней мере родственные) и описывать расположение атомов не по цвету раствора, а по измерению расстояний между атомами. И что же? Оказалось, что химики почти никогда не ошибаются!
Оказывается, что действительно в запахе фиалок присутствуют три слегка различные молекулы, они отличаются только расстановкой атомов водорода.
Одна из проблем в химии – это придумать такое название для вещества, чтобы по нему можно было бы узнать, какое оно. Найти имя для его формы! Но оно должно описывать не только форму, а указывать еще, что здесь стоит кислород, а вон там – водород, чтобы было точно отмечено, где что стоит. Теперь вы понимаете, почему химические названия так сложны. Это не сложность, а полнота. Название молекулы запаха фиалок поэтому таково: 4-(2,2,3,6–тетраметил–5–циклогексан)-3–бутен–2–он. Оно полностью описывает строение молекулы (изображенной на фиг. 1.10), а его длина объясняется сложностью молекулы.
Фиг. 1.10. Структурная формула запаха фиалки.
Дело, значит, вовсе не в том, что химики хотят затуманить мозги, просто им приходится решать сложнейшую задачу описания молекулы словами!
Но откуда мы все–таки знаем, что атомы существуют? А здесь идет в ход уже описанный прием: мы предполагаем их существование, и все результаты один за другим оказываются такими, как мы предскажем, – какими они должны быть, если все состоит из атомов. Существуют и более прямые доказательства. Вот одно из них. Атомы так малы, что ни в какой микроскоп их не увидишь (даже в электронный, а уж в световой и подавно). Но атомы все время движутся, и если бросить в воду большой шарик (большой по сравнению с атомами), то и он начнет подрагивать. Все равно как в игре в пушбол, где большущий мяч толкают с разных сторон две команды. Толкают в разных направлениях, и куда мяч покатится, не угадаешь. Точно так же будет двигаться и «большой мяч» в воде: в разные моменты времени с разных сторон на него будут сыпаться неодинаковые удары. Поэтому когда мы глядим в хороший микроскоп на мельчайшие частички в воде, то видим их непрерывное метание – итог бомбардировки их атомами. Называется это броуновским движением.
Другие доказательства существования атомов можно извлечь из строения кристаллов. Во многих случаях их строение, определенное из опытов по прохождению рентгеновских лучей через кристаллы, согласуется по своему пространственному расположению с формой самого природного кристалла. Углы между разными гранями кристалла согласуются с точностью не до градусов, а до секунд дуги с углами, высчитанными в предположении, что кристалл сложен из множества «слоев» атомов.
Все состоит из атомов. Это самое основное утверждение. В биологии, например, самое важное предположение состоит в том, что все, что делает животное, совершают атомы. Иными словами, в живых существах нет ничего, что не могло бы быть понято с той точки зрения, что они состоят из атомов, действующих по законам физики. Когда–то это не было еще ясно, Потребовалось немало опытов и размышлений, прежде чем высказать это предположение, но теперь оно повсеместно принято и приносит огромную пользу, порождая новые идеи в области биологии.
Да посудите сами! Если уж стальной кубик или кристаллик соли, сложенный из одинаковых рядов одинаковых атомов, может обнаруживать такие интересные свойства; если вода – простые капельки, неотличимые друг от друга и покрывающие миля за милей поверхность Земли, – способна порождать волны и пену, гром прибоя и странные узоры на граните набережной; если все это, все богатство жизни вод – всего лишь свойства сгустков атомов, то сколько же еще в них скрыто возможностей? Если вместо того, чтобы выстраивать атомы по ранжиру, строй за строем, колонну за колонной, даже вместо того, чтобы сооружать из них замысловатые молекулы запаха фиалок, если вместо этого располагать их каждый раз по–новому, разнообразя их мозаику, не повторяя того, что уже было, – представляете, сколько необыкновенного, неожиданного может возникнуть в их поведении. Разве не может быть, что те «тела», которые разгуливают по улице и беседуют с вами, тоже не что иное, как сгустки атомов, но такие сложные, что уже не хватает фантазии предугадывать по их виду их поведение; Когда мы называем себя сгустками атомов, это не значит, что мы – только собрание атомов, потому что такой сгусток, который никогда не повторяется, прекрасно может оказаться способным и на то, чтобы сидеть у стола и читать эти строки.
*Алмаз тоже может сгореть в воздухе.
Глава 2 ОСНОВНЫЕ ФИЗИЧЕСКИЕ ВОЗЗРЕНИЯ
§ 1. Введение
В этой главе будут рассмотрены самые основные представления о физике; здесь будет идти речь о том, как теперь мы представляем себе природу вещей. Я не буду рассказывать историю того, как стало известно, что эти представления правильны; это мы отложим до другого раза.
Предмет науки предстает перед нами во множестве проявлений, в обилии признаков. Спуститесь к морю, вглядитесь в него. Это ведь не просто вода. Это вода и пена, это рябь и набегающие волны, это облака, солнце и голубое небо, это свет и тепло, шум и дыхание ветра, это песок и скалы, водоросли и рыба, их жизнь и гибель, это и вы сами, ваши глаза и мысли, ваше ощущение счастья. И не то ли в любом другом месте, не такое ли разнообразие явлений и влияний? Вы не найдете в природе ничего простого, все в ней перепутано и слито. А наша любознательность требует найти в этом простоту, требует, чтобы мы ставили вопросы, пытались ухватить суть вещей и понять их многоликость как возможный итог действия сравнительно небольшого количества простейших процессов и сил, на все лады сочетающихся между собой.
И мы спрашиваем себя: отличается ли песок от камня? Быть может, это всего лишь множество камешков? А может, и Луна – огромный камень? Тогда, поняв что такое камни, не поймем ли мы тем самым природу песка и Луны? А ветер – что это такое? Может, это всплески воздуха, как вон те всплески воды у берега? Что общего между всяким движением? А есть ли что–нибудь общее между всевозможными звуками? Сколько получится, если пересчитать все цвета? И так далее и так далее. Вот так мы постепенно пробуем проанализировать все вокруг, связать то, что кажется несвязуемым, в надежде, что удастся уменьшить количество различных явлений и тем самым их лучше понять.
Способ получать частичные ответы на подобные вопросы был придуман еще несколько сот лет назад. Наблюдение, размышление и опыт – вот что составляет так называемый научный метод. Мы ограничимся здесь только голым описанием фундаментальных идей физики, основ мировоззрения, возникшего в физике от применения научного метода.
Что значит «понять» что–либо? Представьте себе, что сложный строй движущихся объектов, который и есть мир, – это что–то вроде гигантских шахмат, в которые играют боги, а мы следим за их игрой. В чем правила игры, мы не знаем; все, что нам разрешили, – это наблюдать за игрой. Конечно, если посмотреть подольше, то кое–какие правила можно ухватить. Под основными физическими воззрениями, под фундаментальной физикой мы понимаем правила игры. Но, даже зная все правила, можно не понять какого–то хода просто из–за его сложности или ограниченности нашего ума. Тот, кто играет в шахматы, знает, что правила выучить легко, а вот понять ход игрока или выбрать наилучший ход порой очень трудно. Ничуть не лучше, а то и хуже обстоит дело в природе. Не исключено, что в конце концов все правила будут найдены, но пока отнюдь не все они нам известны. То и дело тебя поджидает рокировка или какой–нибудь другой непонятный ход. Но, помимо того, что мы не знаем всех правил, лишь очень и очень редко нам удается действительно объяснить что–либо на их основе. Ведь почти все встречающиеся положения настолько сложны, что нет никакой возможности, заглядывая в правила, проследить за планом игры, а тем более предугадать очередной ход. Приходится поэтому ограничиваться самыми основными правилами. Когда мы разбираемся в них, то уже считаем, что «поняли» мир.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.